Импортные свч транзисторы средней мощности. Мощные СВЧ-транзисторы Philips Semiconductors

Транзистор Параметр
n-p-n Iкбо при Uкб мА/В Iэбо при Uэб мА/В h21э ед. Frp Мгц Ск пф т к пС Uкб max В Uкэ max В Uэб max В Iк max А I к имп А Iб max А P max Вт Рт max Вт
2Т606А 1/65 0,1/4 3,5 0,01 0,4 0,8 0,1 0,8 2,5
КТ606А 1,5/65 0,3/4 0.012 0,4 0,8 0,1 0,8 2,5
КТ606Б 1,5/65 0,3/4 0,012 0,4 0,8 0,1 0,6 2,0
2Т607А-4 н/д н/д 0,125 н/д н/д 0,3 1,0
КТ607А-4 н/д н/д 0,15 н/д н/д 0.9 1.5
КТ607Б-4 н/д н/д 4,5 0,15 н/д н/д 0,8 1,5
2Т610А 0,5/20 0,1/4 50-250 4,1 0,3 н/Д н/д 1,5 н/д
2Т610Б 0,5/20 0,1/4 20-250 4,1 0,3 н/д н/д 1,5 н/д
КТ610А 0,5/20 0,1/4 50-300 4,1 0,3 н/д н/д 1,5 н/д
КТ610Б 0,5/20 0,1/4 50-300 4,1 0,3 н/д н/д 1,5 н/д
2Т633А 0,003/30 0,003/4 40-140 3,3 н/д 4,5 0,2 0,5 0,12 0,36 1,2
КТ633Б 0,01/30 0,01/4 20-160 3,3 н/д 4,5 0,2 0,5 0,12 0,36 1,2
2Т634А 1/30 0,2/3 н/д 3,5 0,15 0,25 0,07 0,96 1.8
КТ634Б 2/30 0,4/3 н/д 3,5 0,15 0,25 0,07 0,96 1,8
2Т637А 0,1/30 0,2/2,5 30-140 2,5 0,2 0,3 0,1 1,5 н/д
КТ637А 0,1/30 0,2/2,5 30-140 2,5 0,2 0,3 0,1 1,5 н/д
КТ637Б 2/30 0,2/2,5 30-140 2,5 0,2 0,3 0,1 1,5 н/д
2Т640А 0,5/25 0,1/3 min 15 1,3 0,6 0,06 н/д н/д 0,6 н/д
КТ640А 0,5/25 0,1/3 min 15 1,3 0,6 0,06 н/д н/д 0,6 н/д
КТ640Б 0,5/25 0,1/3 min 15 1,3 0,06 н/д н/д 0,6 н/д
КТ640В 0,5/25 0,1/3 min 15 1,3 0,06 н/д н/д 0,6 н/д
2Т642А 1/20 0,1/2 н/д 1,1 н/д 0,06 н/д н/д 0,5 н/д
КТ642А 1/20 0,1/2 н/Д 1,1 н/д 0,06 н/д н/д 0,5 н/д
2Т642А1 0,5/15 0,1/2 н/д н/д н/д 0,04 н/д н/д 0.35 н/д
2Т642Б1 0,5/15 0,1/2 н/д н/д н/д 0,04 н/д н/д 0,35 н/д
2Т642В1 0,5/15 0,1/2 н/д н/д н/д 0,04 н/д н/д 0,2с н/д
2Т642Г1 0,5/15 0,1/2 н/д н/д н/д 0,04 н/д н/д 0,23 н/д
2Т643А-2 0,02/25 0,01/3 50-150 1,8 н/д 0,12 0,12 н/д 3,15 н/д
2Т643Б-2 0,02/25 0,01/3 50-150 1,8 н/д 0,12 0,12 н/д 0,15 н/д
2Т647А-2 0,05/18 0,2/2 н/Д 1,5 н/д н/Д 0,09 н/д н/д 5,56 0,8
КТ647А-2 0,05/18 0,2/2 н/д 1.5 н/д н/д 0,09 н/Д н/д 0,56 0,8
2Т648А-2 1/18 0.2/2 н/д 1,5 н/д н/д 0,06 н/д н/д 0,4 0,6
КТ648А-2 1/18 0,2/2 н/д 1,5 н/д н/д 0,06 н/д н/д 0,4 0,6
2Т657А-2 1/12 0,1/2 60-200 н/д н/д 0,06 н/д н/д 0,31 н/д
2Т657Б-2 1/12 0,1/2 60-200 н/д н/д 0.06 н/д н/д 0,31 н/д
2Т657В-2 1/12 0,1/2 35-50 н/д н/д 0,06 н/д н/д 3,37 н/д
КТ657А-2 1/12 0,1/2 60-200 н/д н/д 0,06 н/д н/д 3,37 н/д
КТ657Б-2 1/12 0,1/2 60-200 н/д н/д 0,06 н/д н/д 3,37 н/д
КТ657В-2 1/12 0,1/2 35-50 н/д н/д 0.06 н/д н/д 3,37 н/д
КТ659А н/д н/д min 35 н/д 1,2 н/д н/д н/д
2Т671А 1/15 0,4/1,5 н/д 1,5 н/д 1,5 0,15 0,15 н/д 0,9 н/д
2Т682А-2 1мкА/10 0,02/1 40-70 н/д н/д 0,05 н/д н/д 0,33 н/д
2Т682Б-2 1мкА/10 0,02/1 80-100 н/д н/Д 0,05 н/д н/д 0,33 н/д
КТ682А-2 1мкА/10 0,02/1 40-50 н/д н/д 0,05 н/д н/д 0,33 н/д

В таблице приняты такие обозначения электрических параметров транзисторов:


Iкбо - обратный ток коллектора (коллектор-база), в числителе, при напряжении между коллектором и базой, в знаминателе.
Iэбо - обратный ток эмиттера (эмиттер -база), в числителе, при напряжении между эмиттером и базой, в знаминателе.
h21э - статический коэффициент передачи тока (коэффициент усиления).
Fгр - верхняя граничная частота коэффициента передачи транзистора.
Ск - емкость коллекторного перехода, т к - постоянная времени цепи обратной связи (не более).
Ukб max - максимальное допустимое напряжение между коллектором и базой.
Uкэ max - максимальное допустимое напряжение между коллектором и эмиттером
Uэб max - максимальное допустимое напряжение между эмиттером и базой.
Iк max - максимальный ток коллектора.
Iк имп. - максимальный импульсный коллекторный ток.
Iб max - максимальный ток базы.
Рmax - максимальная мощность без теплоотвода.
Рт max - максимальная мощность с теплоотводом.

Справочники радиолюбителя

Современный уровень развития РЭА и ее элементной базы позволяет в настоящее время создавать полностью твердотельные УКВ ЧМ и телевизионные передатчики с выходной мощностью до 5 кВт . Усилительные тракты на основе широкополосных транзисторных усилителей имеют ряд преимуществ по сравнению с ламповыми. Твердотельные передатчики более надежны, электробезопасны, удобны в эксплуатации и легче в производстве.

При блочно-модульной конструкции передатчика отказ одного из блоков оконечного усилителя не приводит к срыву эфирного вещания, поскольку передача будет продолжаться до замены блока, только с пониженной мощностью. Кроме того, широкополосный тракт транзисторного усилителя не требует дополнительной настройки на конкретный канал в пределах рабочей полосы частот.

Принято считать, что надежность передатчика зависит, прежде всего, от надежности применяемых активных компонентов. Благодаря применению современных мощных линейных СВЧ транзисторов, конструктивные особенности и технология изготовления которых обеспечивают существенное увеличение их времени наработки на отказ, вопрос повышения надежности твердотельных передатчиков получил принципиальное решение .

Растущие требования к техникоэкономическим показателям УКВ ЧМ и телевизионных мощных передатчиков, а также достигнутый уровень отечественной технологии в области создания мощных кремниевых биполярных транзисторов стимулировали развитие нового класса приборов - мощных линейных СВЧ транзисторов. НИИ электронной техники (г. Воронеж) разработал и выпускает их широкую номенклатуру для применения в метровом и дециметровом диапазонах волн.

Транзисторы специально рассчитаны на использование в мощных телевизионных и радиовещательных передатчиках, ретрансляторах, в частности, в телевизионных ретрансляторах с совместным усилением сигналов звука и изображения, а также в усилителях многоканального сигнала базовых станций сотовой системы связи . Эти транзисторы отвечают чрезвычайно жестким требованиям к линейности передаточной характеристики, имеют запас по рассеиваемой мощности и, как следствие, повышенную надежность.

Конструктивно такие транзисторы выполнены в металло-керамических корпусах. Их внешний вид изображен на рис. 1 (показаны корпусы не всех упоминаемых в статье транзисторов; недостающие можно увидеть в статье ). Высокие линейные и частотные свойства транзисторных структур реализованы благодаря применению прецизионной изопланарной технологии. Диффузионные слои имеют субмикронную проектную норму. Ширина эмиттерных элементов топологии - около 1,5 мкм при чрезвычайно развитом их периметре.

В целях устранения отказов, вызванных вторичным электрическим и тепловым пробоем, транзисторную структуру формируют на кремниевом кристалле с двуслойным эпитаксиальным коллектором и использованием эмиттерных стабилизирующих резисторов. Долговременной надежностью транзисторы обязаны также применению многослойной металлизации на основе золота.

Линейные транзисторы с рассеиваемой мощностью более 50 Вт (за исключением КТ9116А, КТ9116Б, КТ9133А), как правило, имеют конструктивно встроенную LC-цепь согласования по входу, выполненную в виде микросборки на основе встроенного МДП-конденсатора и системы проволочных выводов. Внутренние цепи согласования позволяют расширить рабочую частотную полосу, упростить согласование по входу и выходу, а также повысить коэффициент усиления по мощности Кур в частотной полосе.

Вместе с тем эти транзисторы являются "балансными", что означает наличие на одном фланце двух идентичных транзисторных структур, объединенных общим эмиттером. Такое конструктивно-техническое решение позволяет уменьшить индуктивность вывода общего электрода и также способствует расширению частотной полосы и упрощению согласования.

При двухтактном включении балансных транзисторов потенциал их средней точки теоретически равен нулю, что соответствует условию искусственной "земли". Такое включение реально обеспечивает примерно четырехкратное увеличение выходного комплексного сопротивления по сравнению с однотактным при одинаковом уровне выходного сигнала и эффективное подавление четных гармонических составляющих в спектре полезного сигнала.

Хорошо известно, что качество телевизионного вещания, прежде всего, зависит от того, насколько линейна передаточная характеристика электронного тракта. Особенно остро вопрос линейности стоит при проектировании узлов совместного усиления сигналов изображения и звука ввиду появления в частотном спектре комбинационных составляющих. Поэтому был принят предложенный зарубежными специалистами трехтоновый метод оценки линейности передаточной характеристики отечественных транзисторов по уровню подавления комбинационной составляющей третьего порядка.

Метод основан на анализе реального телевизионного сигнала при соотношении уровней сигналов несущей частоты изображения -8 дБ. боковой частоты -16 дБ и несущей частоты звукового сопровождения -7 дБ относительно отдаваемой мощности в пике огибающей. Транзисторы для совместного усиления в зависимости от частотного и мощностного ряда должны обеспечивать значение коэффициента комбинационных составляющих МЗ, как правило, не более -53...-60 дБ.

Рассматриваемый класс СВЧ транзисторов с жесткой регламентацией подавления комбинационных составляющих за рубежом получил название суперлинейных транзисторов . Следует отметить, что столь высокий уровень линейности обычно реализуем только в режиме класса А, где можно максимально провести режимную линеаризацию передаточной характеристики.

В метровом диапазоне, как видно из таблицы, имеется ряд транзисторов, представленный приборами КТ9116А, КТ91166, КТ9133А и КТ9173А с выходной пиковой мощностью Рвмх.пик соответственно 5,15, 30 и 50 Вт. В дециметровом диапазоне волн такой ряд представлен приборами КТ983А, КТ983Б, КТ983В, КТ9150Аи ПОЗ с РВВ1Х,ПИК, равной 0,5, 1,3,5, 8 и 25 Вт.

Суперлинейиые транзисторы обычно применяют в совместных усилителях (в режиме класса А) телевизионных ретрансляторов и модулях усилителей мощности передатчиков мощностью до 100 Вт.

Однако для выходных ступеней мощных передатчиков нужны более мощные транзисторы, обеспечивающие необходимый уровень верхней границы линейного динамического диапазона при работе в выгодном энергетическом режиме. Приемлемые нелинейные искажения на большом уровне сигнала могут быть получены применением раздельного усиления в режиме класса АВ.

Исходя из анализа теплофизических условий работы транзистора и особенностей формирования линейности однотонового сигнала, была специально разработана серия СВЧ транзисторов для режима работы в классе АВ. Линейность характеристики этих приборов по зарубежной методике оценивают по уровню компрессии (сжатия) коэффициента усиления по мощности однотонового сигнала - коэффициенту сжатия Ксж или иначе - определяют выходную мощность при некотором нормированном Ксж.

Для применения в метровом диапазоне волн в режиме класса АВ теперь есть транзисторы КТ9151А с выходной мощностью 200 Вт и транзисторы КТ9174А - 300 Вт. Для дециметрового диапазона разработаны транзисторы 2Т9155А, КТ9142А, 2Т9155Б, КТ9152А, 2Т9155В, КТ9182А с выходной мощностью от 15 до 150 Вт.

Впервые возможность создания модульных твердотельных передатчиков в дециметровом диапазоне с совместным усилением сигналов изображения и звукового сопровождения мощностью 100 Вт была продемонстрирована специалистами фирмы NEC . Позднее и на отечественных мощных СВЧ транзисторах были созданы аналогичные передатчики 12, 9]. В частности, в рассказано об оригинальных исследованиях по расширению области использования мощных транзисторов КТ9151А и КТ9152А при создании стоваттных модулей совместного усиления в режиме класса А. Показано, что в этом режиме возможно обеспечивать подавление комбинационных составляющих при недоиспользовании их мощности в 3...4 раза от номинальной в режиме класса АВ.

Специалистами Новосибирского государственного технического университета проведены исследования по применению отечественных мощных СВЧ транзисторов в модулях телевизионных усилителей мощности с раздельным усилением.

На рис. 2 представлена структурная схема усилителя мощности сигнала изображения для телевизионных каналов 1 - 5 с выходной пиковой мощностью 250 Вт. Усилитель выполнен по схеме раздельного усиления сигналов изображения и звука. Для каналов 6 - 12 усилитель выполняют по аналогичной схеме с добавлением промежуточной ступени на транзисторе КТ9116А, работающем в режиме класса А, для получения требуемого коэффициента усиления.

В выходной ступени транзисторы КТ9151А работают в классе АВ. Она собрана по балансно-двухтактной схеме. Это позволяет получить номинальную выходную мощность с довольно простыми согласующими цепями при полном отсутствии "фидерного эха" и уровне четных гармонических составляющих не более -35 дБ. Нелинейность амплитудной характеристики усилителя устанавливают при малом сигнале подборкой смещения рабочей точки в каждой ступени, а также корректировкой нелинейности в видеомодуляторе возбудителя.

Структурная схема усилителя мощности для телевизионных каналов 21 - 60 изображена на рис. 3. Выходная ступень усилителя выполнена также по балансно-двухтактной схеме.

Для обеспечения широкополосного согласования и перехода от несимметричной к симметричной нагрузке в выходных ступенях усилителей каналов 6 - 12 , 21 - 60 применен в качестве корректирующей цепи двухзвенный ФНЧ. Индуктивность первого звена согласующей цепи реализована в виде участков полосковых микролиний на элементах общей топологии печатной платы. Катушками второго звена служат выводы базы транзисторов.

Структура этих усилителей соответствует рис. 2 и 3. Разделение мощности на входе усилительных ступеней и ее сложение на их выходе, а также согласование входов и выходов со стандартной нагрузкой выполнено с помощью трехдецибельных направленных ответвителеи. Конструктивно каждый ответвитель выполнен в виде бифилярных обмоток (четвертьволновых линий) на каркасе, помещенном в экранирующий кожух.

Таким образом, современные отечественные линейные СВЧ транзисторы позволяют создавать мощные - до 250 Вт - модули телевизионных усилителей. Используя батареи таких модулей, можно доводить выходную мощность, отдаваемую в антенно-фидерный тракт, до 2 кВт. В составе передатчиков разработанные усилители отвечают всем современным требованиям на электрические характеристики и надежность.

Мощные линейные СВЧ транзисторы в последнее время начинают широко применять также и при построении усилителей мощности базовых станций сотовой системы связи.

По своему техническому уровню разработанные НИИЭТ мощные СВЧ линейные транзисторы могут быть использованы в качестве элементной базы для создания современной радиовещательной, телевизионной и другой народнохозяйственной и радиолюбительской аппаратуры.

Материал подготовили
А. Асессоров,В. Асессоров, В. Кожевников, С. Матвеев г. Воронеж

ЛИТЕРАТУРА
1. Hlraoka К., FuJIwara S., IkegamI T. etc. Hig power all solid-state UHF transmitters.- NEC Pes. & Develop. 1985. to 79, p. 61 -69.
2. Асессоров В., Кожевников в., Косой А. Научный поиск российских инженеров. Тенденция развития мощных СВЧ транзисторов - Радио, 1994, № 6, с. 2,3.
3. Широкополосные радиопередающие устройства. Под ред. Алексеева О. А.- М.: Связь, 1978, с. 304.
4. FuJIwurdS., IkegamI Т., Maklagama I. etc. SS series solid-state television transmitter. -NEC Res. & Develop. 1989. № 94, p. 78-89.
5. Асессоров В., Кожевников В., Косой А. Тенденция развития мощных СВЧ транзисторов для применения в радиовещании, телевидении и средствах связи.
- Электронная промышленность. 1994. № 4, с. 76-80.
6. Асессоров В., Кожевников В.. Косой А. Новые транзисторы СВЧ. - Радио. 1996. № 5, с. 57. 58.
7. Миплер О. Суперлинейные мощные транзисторы дециметрового диапазона для проводного телевидения- ТИИЭР, 1970. т. 58. №7. с. 138-147.
8. Kojlwara Y., Hlrakuwa К., Sasaki К. etc UHF high power transistor amplifier with high-dielectric substrate. - NEC Res- & Develop. 1977. № 45, p. 50-57.
9. Гребенников А., Никифоров В., Рыжиков А. Мощные транзисторные усилительные модули для УКВ ЧМ и ТВ вещания.- Электросвязь. 1996, № 3, с. 28-31.

Мощные низковольтные СВЧ транзисторы для подвижных средств связи

Журнал "Радио" постоянно информирует своих читателей о новых разработках Воронежского НИИ электронной техники в области создания мощных СВЧ транзисторов для различных областей применения . В этой статье мы знакомим специалистов и радиолюбителей с последними разработками группы СВЧ транзисторов КТ8197, КТ9189, КТ9192, 2Т9188А, КТ9109А, КТ9193 для подвижных средств связи с выходной мощностью от 0,5 до 20 Вт в диапазонах МВ и ДМВ. Ужесточение требований к функциональным и эксплуатационным параметрам современной аппаратуры средств связи предъявляет соответственно и более высокие требования к энергетическим параметрам мощных СВЧ транзисторов, их надежности, а также к конструктивному исполнению приборов.

Прежде всего необходимо иметь в виду, что возимые и носимые радиостанции питаются непосредственно от первичных источников. Для этой цели используют химические источники тока (малогабаритные батареи элементов или аккумуляторов) с напряжением, как правило, от 5 до 15 В. Пониженное напряжение питания накладывает ограничения на мощностные и усилительные свойства генераторного транзистора. Вместе с тем мощные низковольтные СВЧ транзисторы должны обладать высокими энергетическими параметрами (такими, как коэффициент усиления по мощности КуР и коэффициент полезного действия коллекторной цепи ηК) во всем рабочем частотном диапазоне.

Учитывая тот факт, что выходная мощность генераторного транзистора пропорциональна квадрату напряжения основной гармоники на коллекторе, эффект снижения уровня его выходной мощности с уменьшением питающего коллекторного напряжения может быть конструктивным путем скомпенсирован соответствующим увеличением амплитуды тока полезного сигнала. Поэтому при проектировании низковольтных транзисторов в сочетании с решением комплекса конструкторско-технологических задач должны быть оптимально решены вопросы, связанные одновременно с проблемой уменьшения напряжения насыщения коллектор-эмиттер и увеличения плотности критического тока коллектора.

Работа низковольтных транзисторов в режиме с более высокими плотностями тока по сравнению с обычными генераторными транзисторами (предназначенными для использования при Uпит=28 В и выше) усугубляет проблему обеспечения долговременной надежности из-за необходимости подавления более интенсивного проявления деградационных механизмов в токоведущих элементах и контактных слоях металлизации транзисторной структуры. С этой целью в разработанных СВЧ низковольтных транзисторах применена многослойная высоконадежная система металлизации на основе золота.

Рассматриваемые в настоящей статье транзисторы спроектированы с учетом их основного применения в усилителях мощности в режиме класса С при включении по схеме с общим эмиттером. Вместе с тем допустима их работа в режиме классов А, В, и АВ под напряжением, отличном от номинального значения, при условии, что рабочая точка находится в пределах области безопасной работы и приняты меры, не допускающие входа в режим автогенерации.

Транзисторы работоспособны и при значении Uпит менее номинального. Но в этом случае значения электрических параметров могут отличаться от паспортных. Допускается работа транзисторов с токовой нагрузкой, соответствующей значению IК max, если максимально допустимая средняя рассеиваемая мощность коллектора в непрерывном динамическом режиме РК.ср max не превышает предельного значения.

Благодаря тому, что кристаллы транзисторных структур рассматриваемых приборов изготовлены по базовой технологии и имеют общие конструктивнотехнологические признаки, у всех транзисторов одинаковый уровень пробивного напряжения. В соответствии с ТУ на приборы область их применения ограничена значением максимально допустимого постоянного напряжения между эмиттером и базой UЭБmax < 3 В и максимально допустимого постоянного напряжения между коллектором и эмиттером UКЭ max < 36 В. При этом указанные значения пробивного напряжения справедливы для всего интервала рабочей температуры окружающей среды.

Основной концептуальной идеей, позволившей сделать еще один шаг в области создания мощных низковольтных транзисторов в миниатюрном исполнении, стала разработка новых оригинальных конструктивно-технологических решений при создании серий бескорпусных транзисторов КТ8197, КТ9189, КТ9192. Сущность идеи состоит в создании конструкции транзистора на основе керамического кристаллодержателя из окиси бериллия и ленточных металлизированных выводов на гибком носителе - полиимидной пленке.

Ленточный носитель со специальным фотолитографическим рисунком в виде выводной рамки служит единым проводящим элементом, на котором одновременно формируют контакт к многоячеистой транзисторной структуре и внешние выводы прибора. Все элементы внутренней ленточной арматуры герметизируют компаундом. Размеры основания металлизированного керамического держателя - 2,5x2,5 мм. Монтажная поверхность кристаллодержателя и выводы покрыты слоем золота. Вид и габариты транзистора представлены на рис. 1,а. Для сравнения заметим, что наиболее миниатюрные зарубежные транзисторы в металлокерамическом корпусе (например, CASE 249-05 фирмы Motorola) имеют круглое керамическое основание диаметром 7 мм.

Конструктивное исполнение транзисторов серий КТ8197, КТ9189, КТ9192 предусматривает их установку на печатную плату методом поверхностного монтажа. В соответствии с рекомендациями по применению этих транзисторов пайку внешних выводов необходимо производить при температуре 125...180°С в течение не более 5 с.

Благодаря реализации запасов по электрическим и теплофизическим параметрам удалось существенно расширить область потребительских функций бескорпусных СВЧ транзисторов. В частности, для транзисторов серии КТ8197 с номинальным значением напряжения Uпит=7,5 В и серий КТ9189, КТ9192 (12,5 В) граница области безопасной работы в динамическом режиме расширена до Uпит max=15 В. Увеличение питающего напряжения относительно номинального значения позволяет поднять уровень выходной мощности портативного передатчика и соответственно увеличить дальность радиосвязи. Транзисторы способны работать без снижения рассеиваемой мощности в непрерывном динамическом режиме во всем рабочем температурном интервале.

В целом, при разработке этих транзисторов принципиальным образом, были решены вопросы не только миниатюризации, но и снижения стоимости. В результате транзисторы оказались примерно в пять раз дешевле зарубежных аналогичного класса в металлокерамическом корпусе. Разработанные миниатюрные СВЧ транзисторы могут найти самое широкое применение как при традиционном использовании в виде дискретных компонентов, так и в составе гибридных микросхемных усилителей ВЧ мощности. Очевидно, что наиболее эффективно их применение в носимых портативных радиостанциях.

Выходные ступени мобильных передатчиков обычно питают непосредственно от автомобильной аккумуляторной батареи. Транзисторы для выходных ступеней рассчитаны на номинальное напряжение питания Uпит=12,5 В. Параметрические ряды транзисторов для каждого связного диапазона построены с учетом обеспечения разрешенного максимального уровня выходной мощности для возимых передатчиков Рвых=20 Вт . Разработка мощных низковольтных СВЧ транзисторов (с Рвых>10 Вт) сопряжена с более сложными конструкторскими задачами. Дополнительно здесь возникают проблемы сложения динамической мощности и отвода тепла от больших кристаллов СВЧ структур.

Топология кристалла мощных транзисторов имеет весьма развитую эмиттерную структуру, характеризующуюся малым импедансом. Для обеспечения требуемой частотной полосы, упрощения согласования и повышения коэффициента усиления по мощности в транзисторы встраивают LC-цепь внутреннего согласования по входу. Конструктивно LC-цепь выполнена в виде микросборки на основе МДП-конденсатора и системы проволочных выводов, выполняющих роль индуктивных элементов.

В развитие мощностного ряда ранее разработанных транзисторов серии 2Т9175 для применения в УКВ диапазоне созданы транзисторы 2Т9188А (Рвых=10 Вт) и КТ9190А (20 Вт). Для диапазона ДМВ разработаны транзисторы КТ9193А (Рвых=10 Вт) и КТ9193Б (20 Вт). Транзисторы выполнены в стандартном корпусе КТ-83 (см. рис. 1,б).

Использование этого металлокерамического корпуса в свое время позволило создать высоконадежные транзисторы двойного назначения для РЭА с повышенными требованиями к внешним факторам и с возможностью эксплуатации в жестких климатических условиях. С целью обеспечения гарантированной надежности при температуре корпуса от +60°С применительно к транзисторам с выходной мощностью Рвых=10 Вт, а с Рвых=20 Вт - от +40 до +125°С максимально допустимую среднюю рассеиваемую мощность в непрерывном динамическом режиме необходимо линейно уменьшать в соответствии с формулой РК.ср max=(200-Ткорп)/RТ.п-к (где Ткорп - температура корпуса, °С; RТ.п-к - тепловое сопротивление перехода переход-корпус, °С/Вт).

В настоящее время в России создается федеральная сеть радиосвязи по стандарту NМT-450i (на частоте 450 МГц). Разработанная серия приборов КТ9189, 2Т9175, 2Т9188А, КТ9190А может практически полностью покрыть потребность в рассматриваемом секторе рынка аппаратуры на отечественной транзисторной элементной базе.

Кроме этого, уже начиная с 1995 г. в России разворачиваются федеральная сеть сотовой системы подвижной абонентной связи в рамках стандарта GSM (900 МГц) и сотовая система для региональной связи по американскому стандарту AMPS (800 МГц). Для создания указанных сотовых систем радиосвязи в ДМВ могут быть использованы малогабаритные транзисторы серии КТ9192 с выходной мощностью 0,5 и 2 Вт, а также серии КТ9193 с выходной мощностью 10 и 20 Вт.

Решение задачи миниатюризации аппаратуры и, соответственно, ее элементной базы коснулось не только носимых портативных радиопередатчиков. В ряде случаев и для возимой аппаратуры радиосвязи, а также аппаратуры специального назначения возникает потребность в уменьшении массо-габаритных показателей мощных СВЧ низковольтных транзисторов.

Для этих целей разработана модифицированная бесфланцевая конструкция корпуса на базе КТ-83 (рис. 1,в), в котором выпускают транзисторы 2Т9175А-4-2Т9175В-4, 2Т9188А-4, КТ9190А-4, КТ9193А-4, КТ9193Б-4. По электрическим характеристикам они аналогичны соответствующим транзисторам в стандартном конструктивном исполнении. Эти транзисторы монтируют низкотемпературной пайкой кристаллодержателя непосредственно к теплоотводу. Температура корпуса в процессе пайки не должна превышать +150°С, а суммарное время нагревания и пайки - 2 мин.

Основные технические характеристики рассматриваемых транзисторов представлены в табл. 1. Коэффициент полезного действия цепи коллектора всех транзисторов - 55%. Значения максимально допустимого постоянного тока коллектора соответствуют всему интервалу рабочей температуры.

Таблица 1

Транзистор Рабочий частотный диапазон, МГц Выходная мощность, Вт Коэффициент усиления по мощности, раз Напряжение питания, В Максимально допустимая средняя расс. мощность в непр. динамич. режиме, Вт Максимально допустимый постоянный ток коллектора, А Предельные допустимые значения температуры окружающей среды, °С Максимально допустимая температура корпуса, °С Максимально допустимая температура перехода, °С Тепловое сопротивление переход - корпус, °С/Вт Емкость коллектора, пФ Граничная частота усиления, МГц
КТ8197А-2 30...175 0,5 15 7,5 2 0,5 -45...+85 - 160 - 5 400
КТ8197Б-2 2 10 5 1 15
КТ8197В-2 5 8 8 1,6 25
КТ9189А-2 200...470 0,5 12 12,5 2 0,5 -45...+85 - 160 - 4,5 1000
КТ9189Б-2 2 10 5 1 13
КТ9189В-2 5 6 8 1,6 20 900
КТ9192А-2 800...900 0,5 6 12,5 2 0,5 -45...+85 - 160 - 4,5 1200
КТ9192Б-2 2 5 5 1,6 13
2Т9175А; 2Т9175А-4 140...512 0,5 10 7,5 3,75 0,5 -60 125 200 12 10 900
2Т9175Б; 2Т9175Б-4 2 6 7,5 1 6 16
2Т9175В; 2Т9175В-4 5 4 15 2 3 30 780
2Т9188А; 2Т9188А-4 200...470 10 5 12,5 35 5 -60 125 200 4 50 700
КТ9190А; КТ9190А-4 200...470 20 - 12,5 40 8 -60 125 200 3 65 720
КТ9193А; КТ9193А-4 800...900 10 4 12,5 23 4 -60 125 200 5 35 1000
КТ9193Б; КТ9193Б-4 20 - 40 8 3 60

На рис. 2,а изображена полная схема транзисторов 2Т9188А, КТ9190А, а на рис. 2,б - транзисторов серий КТ8197, КТ9189, КТ9192, 2Т9175 (l - расстояние от границы пайки до клеевого шва герметизирующей крышки или герметизирующего покрытия кристаллодержателя. Это расстояние регламентировано в рекомендациях по применению СВЧ транзисторов в ТУ на них и обязательно учитывается при расчете реактивных элементов транзисторов). Параметры реактивных элементов, показанных на схемах, сведены в табл. 2. Эти параметры необходимы для расчета согласующих цепей усилительного тракта разрабатываемых устройств.

Разработка новой транзисторной элементной базы открывает широкую перспективу как создания современной профессиональной коммерческой, а также любительской аппаратуры радиосвязи, так и совершенствования уже разработанной с целью улучшения ее электрических параметров, снижения массы, габаритов и стоимости.

Таблица 2

Параметры реактивных элементов транзистора Транзистор
2Т9175А; 2Т9175А-4 2Т9175Б; 2Т9175Б-4 2Т9175В; 2Т9175В-4 2Т9188А; 2Т9188А-4 КТ9190А; КТ9190А-4 КТ9193А; КТ9193А-4 КТ9193Б; КТ9193Б-4 КТ8197А-2; КТ9189А-2; КТ9192А-2 КТ8197Б-2; КТ9189Б-2; КТ9192Б-2 КТ8197В-2; КТ9189В-2
L Б1 , нГн 3 2,3 1,8 0,66 0,73 1 0,84 0,19 0,1 0,2
L Б2 , нГн - - - 0,17 0,38 0,58 0,37 - - -
L Э1 , нГн 0,5 0,35 0,28 0,16 0,15 0,26 0,19 0,22 0,12 0,12
L Э2 , нГн - - - 0,2 0,22 0,31 0,26 - - -
L К1 , нГн 1,25 1,1 1 0,61 0,57 0,71 0,61 0,59 0,59 0,59
С1, пФ - - - 370 600 75 150 - - -

Литература

  1. Асессоров В., Кожевников В., Косой А. Научный поиск российских инженеров. Тенденция развития мощных СВЧ транзисторов. - Радио, 1994, № 6, с. 2, 3.
  2. Асессоров В., Кожевников В., Косой А. Новые транзисторы СВЧ. - Радио, 1996, № 5, с. 57, 58.
  3. Асессоров В., Асессоров А., Кожевников В., Матвеев С. Линейные СВЧ транзисторы для усилителей мощности. - Радио, 1998, № 3, с. 49-51.
  4. Радиостанции с угловой модуляцией сухопутной подвижной службы. ГОСТ 12252-86 (СТ СЭВ 4280-83).

Читайте и пишите полезные

СВЧ-транзисторы применяются во многих областях человеческой деятельности: телевизионные и радиовещательные передатчики, ретрансляторы, радары гражданского и военного назначения, базовые станции сотовой системы связи, авионика и т. д.

В последние годы заметна тенденция перехода с биполярной технологии производства СВЧ-транзисторов на технологии VDMOS (Vertical Diffusion Metal Oxide Semiconductors) и LDMOS (Laterally Diffused Metal Oxide Semiconductors). Самая передовая технология LDMOS обладает наилучшими характеристиками, такими, как линейность, усиление, тепловые режимы, устойчивость к рассогласованию, высокий КПД, запас по рассеиваемой мощности, надежность. Производимые Philips транзисторы имеют исключительно высокую повторяемость характеристик от партии к партии, и компания Philips этим гордится. При замене вышедших из строя транзисторов можно не беспокоиться о процессе настройки оборудования заново, так как все параметры транзисторов абсолютно идентичны. Этим не может похвастаться ни один из конкурентов Philips.

Все новые разработки Philips базируются на новой современной LDMOS-технологии.

Транзисторы для базовых станций сотовой связи

Кроме транзисторов упакованных в корпуса, Philips выпускает интегрированные модули.

Таблица 4. Основные интегрированные модули
Тип Pвых, Вт Технология Частота Область применения
BGY916 19 BIPOLAR 900 МГц GSM
BGY916/5 19 BIPOLAR 900 МГц GSM
BGY925 23 BIPOLAR 900 МГц GSM
BGY925/5 23 BIPOLAR 900 МГц GSM
BGY2016 19 BIPOLAR 1800-2000 МГц GSM
BGF802-20 4 LDMOS 900-900 МГц CDMA
BGF 844 20 LDMOS 800-900 МГц GSM/EDGE (USA)
BGF944 20 LDMOS 900-1000 МГц GSM/EDGE (EUROPE)
BGF1801-10 10 LDMOS 1800-1900 МГц GSM/EDGE (EUROPE)
BGF1901-10 10 LDMOS 1900-2000 МГц GSM/EDGE (USA)

Отличительные особенности интегрированных модулей:

  • LDMOS-технология (пайка прямо на радиатор, линейность, большее усиление), o пониженное искажение,
  • меньший нагрев полупроводника за счет использования медного фланца, o интегрированная компенсация температурного смещения,
  • 50-омные входы/выходы,
  • линейное усиление,
  • поддержка многих стандартов (EDGE, CDMA).

BGF0810-90

  • выходная мощность: 40 Вт,
  • усиление: 16 дБ,
  • КПД: 37%,

BLF1820-90

  • выходная мощность: 40 Вт,
  • усиление: 12 дБ,
  • КПД: 32%,
  • ослабление мощности по соседнему каналу ACPR: -60 дБ,
  • амплитуда вектора ошибок EVM: 2%.

Транзисторы для вещательных станций

На протяжении последних 25 лет компания Philips сохраняет лидерство в данной области. Использование последних достижений в технологии LDMOS (серии BLF1xx, BLF2xx, BLF3xx, BLF4xx, BLF5xx,) позволяет постоянно укреплять позиции на рынке. В качестве примера можно привести огромный успех транзистора BLF861 для ТВ-передатчиков. В отличие от транзисторов конкурентов, BLF861 зарекомендовал себя высоконадежным и высокостабильным элементом, защищенным от выхода из строя при отключении антенны. Никто из конкурентов не смог приблизиться к характеристикам BLF861 по стабильности работы. Можно назвать основные сферы применения таких транзисторов: передатчики на частоты от HF до 800 МГц, частные радиостанции PMR (TETRA), передатчики VHF гражданского и военного назначения.

Таблица 5. L- и S-полосные транзисторы для радаров

Тип F, ГГц Vcc,B Tp, мкс Коэфф. заполнения, % Мощность, Вт КПД,% Усиление, дБ
L-полоса RZ1214B35Y 1,2-1,4 50 150 5 >35 >30 >7
RZ1214B65Y 1,2-1,4 50 150 5 >70 >35 >7
RX1214B130Y 1,2-1,4 50 150 5 >130 >35 >7
RX1214B170W 1,2-1,4 42 500 10 >170 >40 >6
RX1214B300Y 1,2-1,4 50 150 5 >250 >35 >7
RX1214B350Y 1,2-1,4 50 130 6 >280 >40 >7
Bill 21435 1,2-1,4 36 100 10 >35 45 >13
BLL1214-250 1,2-1,4 36 100 10 >250 45 >13
S-полоса BLS2731-10 2,7-3,1 40 100 10 >10 45 9
BLS2731-20 2,7-3,1 40 100 10 >20 40 8
BLS2731-50 2,7-3,1 40 100 10 >50 40 9
BLS2731-110 2,7-3,1 40 100 10 >110 40 7,5
Верхняя S-полоса BLS3135-10 3,1-3,5 40 100 10 >10 40 9
BLS3135-20 3,1-3,5 40 100 10 >20 40 8
BLS3135-50 3,1-3,5 40 100 10 >50 40 8
BLS3135-65 3,1-3,5 40 100 10 >65 40 >7
Таблица 6. Транзисторы для авионики

Тип F,ГГц Vcc,B Tp, мкс Коэфф. заполнения, % Мощность, Вт КПД,% Усиление, дБ
BIPOLAR MZ0912B50Y 0,96-1,215 50 10 10 >50 >42 >7
MX0912B100Y 0,96-1,215 50 10 10 >100 >42 >7
MX0912B251Y 0,96-1,215 50 10 10 >235 >42 >7
MX0912B351Y 0,96-1,215 42 10 10 >325 >40 >7
LDMOS

Vds




BLA1011-200 1,03-1,09 36 50 1 >200 50 15
BLA1011-10 1,03-1,09 36 50 1 >10 40 16
BLA1011-2 1,03-1,09 36 50 1 >2 - 18

Основные характеристики транзистора BLF861A

  • Push-pull-транзистор (двухтактный усилитель),
  • выходная мощность более 150 Вт,
  • усиление более 13 дБ,
  • КПД более 50%,
  • закрывает полосу от 470 до 860 МГц (полосы IV и V),
  • является индустриальным стандартом в ТВ-передатчиках на сегодняшний день.

Новая модель транзистора BLF647

  • разработан на основе BLF861A,
  • большой коэффициент усиления 16 дБ на 600 МГц,
  • выходная мощность до 150 Вт,
  • закрывает полосу от 1,5 до 800 МГц,
  • надежный, устойчивый к рассогласованию,
  • устойчив к отключению антенны,
  • имеет встроенный резистор, позволяющий работать на частотах HF и VHF,
  • Push-pull-транзистор (двухтактный усилитель).

Транзистор BLF872

  • разрабатывается как более мощная замена BLF861A,
  • начало производства 1 квартал 2004 года,
  • выходная мощность до 250 Вт,
  • самый надежный транзистор по устойчивости к рассогласованию,
  • сохраняет линейность,
  • сохраняет надежность,
  • смещение тока Idq менее 10% на 20 лет,
  • коэффициент усиления более 14 дБ,
  • закрывает полосу от 470 до 860 МГц.

Транзисторы для радаров и авионики

Новые транзисторы Philips для радаров и авионики также производятся по современной LDMOS-технологии. Кристаллы, выполненные по технологии LDMOS, меньше нагреваются, являются более надежными, имеют большее усиление, не требуют изолятора между подложкой и радиатором. Соответственно, для достижения тех же характеристик требуется меньшее число транзисторов, что дополнительно повышает надежность и снижает стоимость изделия.

Новые разработки:

BLA0912-250

  • полоса от 960 до 1250 МГц (все главные частоты авионики),
  • высокое усиление до 13 дБ,
  • надежность, устойчивость к рассогласованию фаз 5:1,
  • линейность,
  • образцы будут доступны с июня 2003 года.

BLS2934-100

  • полоса от 2,9 до 3,4 ГГц (все главные частоты авионики),
  • использование стандартного негерметичного корпуса,
  • образцы будут доступны к концу 2003 года.

Подводя итоги, можно с уверенностью сказать, что компания Philips идет в ногу со временем и предлагает транзисторы, позволяющие создавать новые устройства, которые обладают более совершенными характеристиками: меньший размер, большая выходная мощность, меньшее число компонентов обвязки и меньшая цена конечного изделия.