Аппарат плазменной сварки и резки своими руками. Собираем самодельный плазменный резак

Плазменная резка активно используется во многих промышленных областях. Однако плазморез вполне способен пригодиться частному мастеру. Аппарат позволяет с высокой скоростью и качеством резать любые токопроводящие и не токопроводящие материалы. Технология работы создает возможность обработки любых деталей или создания фигурных резов, которая осуществляется дугой плазмы высокой температурой. Создается поток базовыми составляющими – электрическим током и воздухом. Но выгоды от использования аппарата несколько омрачаются ценой заводских моделей. Чтобы обеспечить себя возможностью работы можно создать плазморез своими руками. Далее приводим подробную инструкцию с порядком действий и перечнем оборудования, которое необходимо.

Что выбрать: трансформатор или инвертор?

За счет наличия особенностей и параметров аппаратов для проведения плазменной резки возможно разделить их на типы. Наибольшую популярность завоевали инверторы и трансформаторы. Стоимость аппарата каждой модели будет определяться заявленной мощностью и рабочими циклами.

Инверторы обладают малым весом, компактными габаритами и минимально потребляют электроэнергию. К недостаткам оборудования можно отнести повышенную чувствительность к перепадам напряжения. Не каждый инвертор способен функционировать в особенностях режима нашей электрической сети. Если выходит из строя система защиты аппарата, то необходимо обращаться в сервисный центр. Также инверторные плазморезы обладают ограничением по номинальной мощности – не более 70 ампер и малым периодом включения оборудования при большом токе.

Трансформатор, по традиции, считается более надежным, чем инвертор. Они даже при ощутимом падении напряжения теряют только часть мощности, но не ломаются. Это свойство определяет более высокую стоимость. Плазморезы на основе трансформатора могут работать и включаться в рабочий режим на больший срок. Подобное оборудование применяется в автоматических линиях с ЧПУ. Отрицательным моментом трансформаторного плазмореза будет значительная масса, высокое энергопотребление и размеры.

Наибольшее значение толщины металла, которое способен резать плазморез составляет от 50 до 55 миллиметров. Среднее значение мощности оборудования равняется 150 – 180 А.

Средняя стоимость заводских аппаратов

Ассортимент плазморезов для ручной резки материалов сейчас поистине огромен. Ценовые категории также различны. Цену аппаратов определяют следующие факторы:

  • Тип устройства;
  • Производитель и страна производства;
  • Максимально возможная глубина реза;
  • Модель.

Решив изучить возможность покупки плазмореза, необходимо интересоваться стоимостью дополнительных элементов и комплектующих к оборудованию, без которых полноценно работать будет сложно. Средние цены на аппараты в зависимости от толщины разрезаемого металла составляют:

  • До 6 мм – 15 000 – 20 000 рублей;
  • До 10 мм – 20 000 – 25 000;
  • До 12 мм – 32 000 – 230 000;
  • До 17 мм – 45 000 – 270 000;
  • До 25 мм – 81 000 – 220 000;
  • До 30 мм – 150 000 – 300 000.

Популярными аппаратами являются «Горыныч», «Ресанта» ИПР-25, ИПР-40, ИПР-40 К.

Как можно увидеть ценовой диапазон обширен. В связи с этим актуальность самодельного плазмореза повышается. Изучив инструкции вполне можно создать аппарат, ничуть не уступающих по техническим характеристикам. Подобрать инвертор или трансформатор можно по цене существенно ниже, чем представленные расценки.

Принцип действия

После нажатия на кнопку розжига происходит пуск источника электроэнергии, подающий в рабочий инструмент высокочастотный ток. Возникает дуга (дежурная) между расположенным в резаке (плазмотроне) наконечником и электродом. Температурный диапазон от 6 до 8 тысяч градусов. Стоит заметить, что рабочая дуга создается не моментально, существует определенная задержка.

Затем в полость плазмотрона поступает сжатый воздух. Для этого предназначается компрессор. Проходя сквозь камеру с дежурной дугой на электроде, он подвергается нагреву и увеличивается в объеме. Процесс сопровождается ионизацией воздуха, что переводит его в токопроводящее состояние.

Через узкое сопло плазмотрона полученный поток плазмы подается к обрабатываемой детали. Скорость потока составляет 2 – 3 м/с. Воздух в ионизированном состоянии способен нагреваться до 30 000°С. В этом состоянии значение электропроводимость воздуха близка к проводимости металлических элементов.

После контакта плазмы с разрезаемой поверхностью дежурная дуга отключается и действовать начинает рабочая. Далее осуществляется плавка в точках резки, из которых расплавленный металл продувается подаваемым воздухом.

Отличия аппаратов прямого и косвенного действия

Имеются различные типы аппаратов, отличающихся принципами работы. В оборудовании прямого действия предполагается работа электрической дуги. Она приобретает цилиндрическую форму и непосредственно соединяется с газовой струёй. Подобная конструкция оборудования позволяет обеспечить высокую температуру дуге (до 20 000°С) и высокоэффективную охлаждающую систему для других компонентов плазмореза.

В аппаратах косвенного действия работа предполагается с меньшим КПД. Это определяет их меньшее распространение в производстве. Конструктивная особенность оборудования состоит в том, что активные точки цепи размещаются на особых вольфрамовых электродах или трубе. Применяются они чаще для проведения нагрева и напыления, но для резки практически не используются. Чаще всего применяются в ремонте автомобилей.

Общей чертой является присутствие в конструкции воздушного фильтра (продлевает срок эксплуатации электрода, обеспечивает быстрый запуск оборудования) и охладителя (создает условия для длительной эксплуатации аппарата без перерыва). Отличным показателем является возможность непрерывной работы устройства на протяжении 1 часа с 20-минутным перерывом.

Конструкция

При должном желании и умении самодельный плазморез способен создать любой желающий. Но чтобы он мог полноценно и эффективно функционировать необходимо соблюдать определенные правила. Желательно примерять инвертор, т.к. именно он способен обеспечить стабильную подачу тока и стабильную работу дуги. В результате не возникают перебои и значительно уменьшится расход электричества. Но стоит учесть, что плазморез на основе инвертора способен справиться с меньшей толщиной металла, чем трансформатор.

Необходимые комплектующие

Перед началом сборочных работ необходимо подготовить ряд комплектующих, материалов и оборудования:

  1. Инвертор или трансформатор с подходящей мощностью. Чтобы исключить ошибку необходимо определиться с планируемой толщиной резания. Уже на основании этой информации подбирать нужное устройство. Однако с учетом ручной резки стоит выбрать именно инвертор, т.к. он меньше весит и потребляет меньше электричества.
  2. Плазмотрон или плазменный резак. Тоже имеются свои особенности выбора. Прямого действия лучше выбирать для работы с токопроводящими материалами, а косвенного – для не токопроводящих.
  3. Компрессор сжатого воздуха. Требуется уделять внимание номинальной мощности, т.к он обязан справляться с возлагаемой нагрузкой и соответствовать остальным компонентам.
    Кабель-шланг. Требуется для соединения всех комплектующих плазмореза и подачи воздуха к плазмотрону.

Подбор блока питания

Работу плазмореза обеспечивает блок питания. Он формирует заданные параметры электрического тока, напряжения и подает их к режущему узлу. Основным питающим узлом может стать:

  • Инвертор;
  • Трансформатор.

Подходить к выбору питающего элемента необходимо, учитывая особенности аппаратов, описанные выше.

Плазмотрон

Плазмотрон является генератором плазмы. Это рабочий инструмент, в котором формируется плазменная струя, непосредственно разрезающая материалы.

Основными особенностями устройства являются:

  • Создание сверхвысокой температуры;
  • Простая регулировка мощности тока, запуска и остановки рабочих режимов;
  • Компактные габариты;
  • Надежность работы.

Конструктивно плазмотрон состоит из:

  • Электрод/катод, имеющие в своем составе цирконий или гафний. Эти металлы отличаются высоким уровнем термоэлектронной эмиссией;
  • Сопло в основном изолируется от электрода;
  • Механизм, закручивающий плазмообразующий газ.

Сопло, электрод являются расходными материалами плазмотрона. Если плазморезом обрабатывается заготовка до 10 миллиметров, то один комплект электродов расходуется в течение 8 часов работы. Износ происходит равномерно, что позволяет менять их одновременно.

При несвоевременной замене электрода может нарушаться качество резки – изменяется геометрия реза или возникают волны на поверхности. В катоде постепенно выгорает гафниевая вставка. Если она обладает выработкой более 2 миллиметров, то электрод может пригорать и перегревать плазмотрон. Это значит, что не вовремя замененные электроды повлекут за собой быстрый выход из строя остальных элементов рабочего инструмента.

Все плазмотроны можно разделить на 3 объемные группы:

  • Электродуговой – имеет минимум один анод и катод, которые подключены к источнику питания с постоянным током;
  • Высокочастотный – отсутствуют и электроды, и катоды. Связь с питающим устройством основывается на индуктивных/емкостных принципах;
  • Комбинированный – функционирует при воздействии высокочастотного тока и горении дуговых разрядов.

Исходя из метода стабилизации дуги, все плазмотроны также можно разделить на газовый, водяной и магнитный типы. Подобная система является чрезвычайно важной для работы инструмента, т.к. она формирует сжатие потока и фиксирует его на центральной оси сопла.

В настоящее время в продаже имеются различные модификации плазмотронов. Возможно, необходимо изучить предложения, и купить готовый. Однако сделать самодельный в домашних условиях вполне возможно. Для этого требуется:

  • Рукоятка. Необходимо предусмотреть отверстия для проводов.
  • Кнопка.
  • Соответствующий электрод, рассчитанный под действующий ток.
  • Изолятор.
  • Завихритель потока.
  • Сопло. Желательно комплект с различными диаметрами.
  • Наконечник. Необходимо предусмотреть защиту от брызг.
  • Дистанционная пружина. Позволяет выдерживать зазор между поверхностью и соплом.
  • Насадка для удаления нагара и снятия фаски.

Проводить работу можно одним плазмотроном за счет сменных оголовков с различными диаметрами, направляющие плазменный поток на деталь. Необходимо обратить внимание, что они, так же как и электроды, в процессе работы станут оплавляться.

Сопло закрепляется прижимной гайкой. Непосредственно за ним находится электрод и изолятор, предупреждающий розжиг дуги в неположенном месте. Далее размещен завихритель потока, позволяющий усилить эффект дуги. Все элементы размещаются во фторопластовом корпусе. Что-то возможно сделать самостоятельно, а что-то придется приобретать в магазине.

Заводской плазмотрон позволит проводить работу без перегрева более длительное время за счет системы воздушного охлаждения. Однако при кратковременной резке это неважный параметр.

Осциллятор

Осциллятор представляет собой генератор, который вырабатывает высокочастотный ток. Подобный элемент включается в цепь плазмореза между источником питания и плазмотроном. Способны действовать по одной из схем:

  1. Создание кратковременного импульса, который способствует возникновению дуги без прикосновения к поверхности изделия. Внешне представляет собой малую молнию, подаваемую с торца электрода.
  2. Поддержка постоянного напряжения с высоким значением напряжения, накладываемое на сварочный ток. Обеспечивает сохранность стабильного поддержания дуги.

Оборудование позволяет быстро создавать дугу и приступать к резке металла.

В основной своей массе обладают схожим строением и состоят из:

  • Выпрямителя напряжения;
  • Блока накопителя заряда (конденсаторы);
  • Блок питания;
  • Модуль создания импульсов. Включает в себя колебательный контур и разрядник;
  • Блок управления;
  • Повышающего трансформатора;
  • Прибора контроля напряжения.

Основной задачей является модернизация входящего напряжения. Происходит повышение частоты и уровня напряжения, уменьшая период действия менее 1 секунды. Последовательность работы следующая:

  1. Нажимается кнопка на резаке;
  2. В выпрямителе ток выравнивается и становится однонаправленным;
  3. В конденсаторах происходит накопление заряда;
  4. Ток подается на колебательный контур трансформаторных обмоток, повышая уровень напряжения;
  5. Контроль за импульсом осуществляет схема управления;
  6. Импульсом создается разряд на электроде, поджигающий дугу;
  7. Действие импульса завершается;
  8. После прекращения резки осциллятором производится продувка плазмотрона на протяжении еще 4 секунд. За счет этого достигается охлаждение электрода и обрабатываемой поверхности.

В зависимости от типа осциллятора он может применяться по-разному. Однако общей характеристикой является повышение напряжения до 3000 – 5000 вольт и частоты от 150 до 500 кГц. Основные же отличия состоят в интервалах действия высокочастотного тока.

Для использования в плазморезе целесообразно использовать осциллятор для бесконтактного розжига дуги. Подобные элементы применяются для работы в аргоновых сварочниках. В них вольфрамовые электроды будут быстро затупляться если производить контакт с изделием. Включение в схему аппарата осциллятора позволит создавать дугу не совершая контакта с плоскостью детали.

Использование осциллятора позволяет существенно снижать потребность в дорогих расходных материалах и улучшать процесс резки. Правильно подобранное оборудование в соответствии с планируемой работой позволяет повышать ее качество и скорость.

Электроды

Электродам отводится немаловажная роль в процессе создания, поддержания дуги и непосредственной резки. В составе присутствуют металлы, позволяющие электроду не перегреваться и преждевременно не разрушаться при работе с дугой в высокотемпературных режимах.

При покупке электродов для плазмореза необходимо уточнять их состав. С содержанием бериллия и тория создаются вредные пары. Они подойдут для работы в соответствующих условиях, с надлежащей защитой работника, т. е. требуется дополнительная вентиляция. Из-за этого для применения в быту лучше покупать гафниевые электроды.

Компрессор и кабель - шланги

В конструкции большинства самодельных плазморезов включаются компрессоры и шланговые трасы для направления воздуха к плазмотрону. Данный элемент конструкции позволяет разогревать электрическую дугу до 8000°С. Дополнительной функцией является продувка рабочих каналов, очищая их от загрязнений и проводя удаление конденсата. Кроме этого, сжатый воздух способствует охлаждению компонентов аппарата при длительной работе.

Для работы плазмореза возможно применять обычный компрессор сжатого воздуха. Воздухообмен осуществляется тонкими шлангами с подходящими разъемами. На входе размещается электрический клапан, который регулирует процесс подачи воздуха.

В канале от аппарата к горелке размещается электрический кабель. Поэтому здесь необходимо размещать шланг с большим диаметром, в котором может разместиться кабель. Проходящий воздух несет и вентиляционную функцию, так как способен охладить провод.

Масса должна выполняться из кабеля с сечением от 5 мм2. Должен быть зажим. При плохом контакте массы переключение рабочей дуги на дежурную будет проблематичным.

Схемы

Сейчас можно найти множество схем, по которым можно собрать качественный аппарат. Подробно с условными обозначениями помогут разобраться видео. Подходящий принципиальный чертеж оборудования можно выбрать из представленных ниже.






Сборка

До начала сборочного процесса желательно уточнить совместимость подобранных комплектующих. Если вам ранее не приходилось собирать плазменный резак своими руками, то необходимо консультироваться с опытными мастерами.

Процедура сборки предполагает следующую последовательность:

  1. Подготовить все собранные комплектующие;
  2. Сборка электрической цепи. В соответствии со схемой подключается инвертор/трансформатор, электрический кабель;
  3. Подключение компрессора и подачи воздуха к аппарату и плазмотрону с помощью гибких шлангов;
  4. Для собственной подстраховки можно использовать источник бесперебойного питания (ИБП), учитывая емкость аккумулятора.

Подробная технология сборки оборудования представлена на видео.

Проверка плазмореза

После того как подключены все узлы в единую конструкции, необходимо провести проверку на работоспособность.

Обратим внимание на то, что проверка и работа с плазморезом должна осуществляться в защитной одежде с применением средств индивидуальной защиты.

Необходимо включить все агрегаты и нажать кнопку на плазмотроне, подав электричество к электроду. В этот момент в плазмотроне должна образоваться дуга с высокой температурой, проскочив между электродом и соплом.

Если собранное оборудование для плазменной резки способно резать металл толщиной до 2 см, то все сделано верно. Следует учесть, что самодельный аппарат из инвертора не сможет разрезать детали с толщиной более 20 миллиметров, так как недостаточно мощности. Для резки толстых изделий потребуется в качестве источника питания использовать трансформатор.

Достоинства самодельного аппарата

Выгоды, предоставляемые аппаратом воздушно-плазменной резки сложно переоценивать. Он способен точно резать листовой металл. После работы не требуется дополнительно обрабатывать торцы. Главным преимуществом является сокращение времени на работу.

Это уже весомые доводы для самостоятельно сборки оборудования. Схема не отличается сложностью, поэтому дешево переделать инвертор или полуавтомат по силам каждому.

В заключение обратим внимание на то, что работать с плазморезкой необходимо опытному специалисту. Лучше всего если это сварщик. Если же опыта мало, то рекомендуем сначала изучить технологию работы с фото и видео, а после этого приступать к выполнению поставленных задач.

Принцип действия большинства плазматронов мощностью от нескольких кВт до нескольких мегаватт, практически один и тот же. Между катодом, выполненным из тугоплавкого материала, и интенсивно охлаждаемым анодом, горит электрическая дуга.

Через эту дугу продувается рабочее тело (РТ) - плазмообразующий газ, которым может быть воздух, водяной пар, или что другое. Происходит ионизация РТ, и в результате на выходе получаем четвертое агрегатное состояние вещества, называемое плазмой.

В мощных аппаратах вдоль сопла ставится катушка эл.магнита, он служит для стабилизации потока плазмы по оси и уменьшения износа анода.

В этой статье описывается уже вторая по счету конструкция, т.к. первая попытка получить устойчивую плазму не увенчалась особым успехом. Изучив устройство "Алплаза", мы пришли к выводу что повторять его один в один пожалуй не стоит. Если кому интересно - все очень хорошо описано в прилагаемой к нему инструкции.

Наша первая модель не имела активного охлаждения анода. В качестве рабочего тела использовался водяной пар из специально сооруженного электрического парогенератора - герметичный котел с двумя титановыми пластинками, погруженными в воду и включенными в сеть 220V.

Катодом плазматрона служил вольфрамовый электрод диаметром 2 мм который быстро отгорал. Диаметр отверстия сопла анода был 1.2 мм, и оно постоянно засорялось.

Получить стабильную плазму не удалось, но проблески все же были, и это стимулировало к продолжению экспериментов.

В данном плазмогенераторе в качестве рабочего тела испытывались пароводяная смесь и воздух. Выход плазмы получился интенсивнее с водяным паром, но для устойчивой работы его необходимо перегревать до температуры в не одну сотню градусов, чтобы не конденсировался на охлажденных узлах плазматрона.

Такой нагреватель еще не сделан, поэтому эксперименты пока что продолжаются только с воздухом.

Фотографии внутренностей плазматрона:

Анод выполнен из меди, диаметр отверстия сопла от 1.8 до 2 мм. Анодный блок сделан из бронзы, и состоит из двух герметично спаянных деталей, между которыми существует полость для прокачки охлаждающей жидкости - воды или тосола.

Катодом служит слегка заостренный вольфрамовый стержень диаметром 4 мм, полученный из сварочного электрода. Он дополнительно охлаждается потоком рабочего тела, подаваемого под давлением от 0.5 до 1.5 атм.

А вот полностью разобранный плазматрон:

Электропитание подводится к аноду через трубки системы охлаждения, а к катоду - через провод, прицепленный его держателю.

Запуск, т.е. зажигание дуги, производится закручиванием ручки подачи катода до момента соприкосновения с анодом. Затем катод надо сразу же отвести на расстояние 2..4 мм от анода (пара оборотов ручки), и между ними продолжает гореть дуга.

Электропитание, подключение шлангов подачи воздуха от компрессора и системы охлаждения - на следующей схеме:

В качестве балластного резистора можно использовать любой подходящий электронагревательный прибор мощностью от 3 до 5 кВт, например подобрать несколько кипятильников, соединенных параллельно.

Дроссель выпрямителя должен быть рассчитан на ток до 20 A, наш экземпляр содержит около сотни витков толстой медной проволоки.

Диоды подойдут любые, рассчитанные на ток от 50 А и выше, и напряжение от 500 V.

Будьте осторожны! Этот прибор использует бестрансформаторное питание от сети.

Воздушный компрессор для подачи рабочего тела взят автомобильный, а для прокачки охлаждающей жидкости по замкнутому контуру используется автомобильный омыватель стекол. Электропитание к ним подводится от отдельного 12-вольтового трансформатора с выпрямителем.

Немного о планах на будущее

Как показала практика, и эта конструкция тоже оказалась экспериментальная. Наконец-то получена стабильная работа в течение 5 - 10 минут. Но до полного совершенства еще далеко.

Сменные аноды постепенно выгорают, а делать их из меди, да еще с резьбой, затруднительно, уж лучше бы без резьбы. Система охлаждения не имеет прямого контакта жидкости со сменным анодом, и из-за этого теплообмен оставляет желать лучшего. Более удачным был бы вариант с прямым охлаждением.

Детали выточены из имевшихся под рукой полуфабрикатов, конструкция в целом слишком сложна для повторения.

Также необходимо найти мощный развязывающий трансформатор, без него пользоваться плазматроном опасно.

И под завершение еще снимки плазматрона при разрезании проволоки и стальных пластинок. Искры летят почти на метр:)



Плазменный резак часто используется сварщиками, когда нужно осуществлять резку металлических изделий. Совсем не обязательно использовать покупные изделия, которые продаются отдельно. Можно сделать плазморез из сварочного инвертора своими руками. Такой инструмент может хорошо подойти для бытового использования. Он обеспечивает рез высокого качества с тонким слоем прорезания. С его помощью можно осуществлять обработку различных заготовок с высоким уровнем аккуратности.

Если вы решили сделать самодельный плазморез из сварочного инвертора, то в первую очередь следует обратить на силу тока. Его величина определяется источником питания. В данном случае инвертор является намного более предпочтительным вариантом, чем трансформатор, так как он предлагает более стабильную работу. Также у него экономичное энергопотребление, в отличие от прямого конкурента. Естественно, что по такому параметру, как толщина прорезаемой заготовки он уступает трансформатору. Во всех остальных параметрах инвертор оказывается более удобным. Он не столь массивен и габаритен, а коэффициент полезного действия у него заметно выше. Все это сказывается на качестве работы.

Чтобы собрать конструкцию полностью, можно применять готовые детали, которые продаются в соответствующих магазинах. Вполне возможно, что все комплектующие уже могут быть в наличии дома. Во время сборки нужно четко придерживаться схемы, а также построения отдельных ее элементов. Сопло желательно подбирать подлиннее, но не слишком длинное, так как со временем его нужно будет заменять из-за высокого износа.

Схема работы плазмореза

Плазморез из сварочного инвертора позволяет данному виду техники выполнять свое основное предназначение, а именно, подавать сильно разогретый воздух на металлические изделия. Температура может достигать более тысячи градусов, что приводит к нагреву кислорода. В результате нагрева он поступает на поверхность металлического изделия под давлением. Это приводит к разрезанию металла. Чтобы ускорить данную процедуру, следует обеспечить дополнительную ионизацию среды электрическим током.

Схема плазменного инвертора, его силовой части выглядит следующим образом:

Схема плазменного инвертора (управления аппаратом) имеет следующий вид:

Конструкция плазмореза

Плазморез из сварочного инвертора можно сделать при наличии следующих деталей:

  • Компрессор – устройство, которое обеспечивает подачу мощного воздушного потока под давлением;
  • Плазмотрон – выглядит как обыкновенной сварочный резак, с его помощью производятся все основные процедуры по резке;
  • Электроды – с их помощью оснащаются некоторые виды техники, они служат для розжига дуги;
  • Сопло – это наиболее функциональный конструктивный элемент инверторного плазмореза, так как оно дает возможность определить вариант сложности работ, исходя из своей формы и других параметров;
  • Плазморез – элемент, выполняемый в виде косвенного или прямого воздействия.

Конструктивные элементы для сборки

Перед тем как самому сделать плазморез из сварочного инвертора, следует определиться с конструктивными элементами, так как их следует правильно подобрать.

Первым делом нужно обратить внимание на источник питания. В данном случае им выступает . Он обеспечивает подачу тока с заданными характеристиками на устройство. При отсутствии инвертора можно воспользоваться обыкновенным трансформатором.

Плазмотрон является основным элементом в конструкции, так что его подбирают с особой тщательностью. Мощность воздушного компрессора должна быть достаточно высокой, чтобы можно было резать достаточно толстые заготовки. Здесь нужно еще позаботиться о достаточной длине шлангов, чтобы процесс проходил удобно на любом расстоянии

Для плазмотрона нужно подобрать соответствующий электрод, который был бы сделан из подходящего материала. Наиболее подходящим вариантом является торий, бериллий, гафний и цирконий. Эти виды металла хорошо подходят по той причине, что во время нагрева они создают тугоплавкие пленки оксида на своей поверхности. Это обеспечивает высокий уровень защиты и предотвращает инструменты от разрушения.

От характеристик сопла зависит общий результат работы и ее качество. Одним из лучших вариантов является сопло с диаметром около 3 см. Длина влияет на качество и аккуратность исполнения разреза. Но если оно будет слишком длинным, то это приведет к его быстрому разрушению.

Ни один плазморез не обходится без компрессора. Он не только подает воздух под давлением, но и может служить как дополнительная система охлаждения.

Процесс изготовления резака своими руками

Плазморез из сварочного аппарата своими руками сделать не так уж сложно, при наличии соответствующих инструментов и материалов. Когда все элементы правильно подобраны и подготовлены к сборке, то можно приступать к сборке. Чтобы соединить компрессор, плазмотрон и источник питания, необходимо использовать особый кабель-шланговый пакет. В данном деле главное соблюдать правильный порядок.

  1. Проверяется работоспособность сварочного инвертора, а затем от при помощи кабеля подключается к электроду, что обеспечивает создание дуги.
  2. Сжатый воздух подается от компрессора через шланг.
  3. Шланг соединяет компрессор и плазмотрон, который должен преобразовывать струю воздуха в плазму для резки.

Если все уже собрано, следует проверить работоспособность аппарата. Когда техника включена, то инвертор должен подавать высокочастотный ток на плазмотрон. В этот момент в зажигается дуга и ее температура может составлять, примерно, 6-8 тысяч градусов. Из патрубка подается воздух, который проходит через электрическую дугу. Его объем начинает увеличиваться до 100 раз. На данном этапе происходит ионизация электрической дуги.

Вся субстанция выводится из сопла, которое помогает сформировать узкий поток рабочей среды. Скорость подачи потока составляет до 3 м/с. В это же время рабочая температура повышается до 30 тысяч градусов Цельсия, что создает плазму. Когда плазма соприкасается с деталью, то дежурная дуга начинает гаснуть, а вместо нее зажигается режущая. Благодаря потоку воздуха все расплавленные детали металла сдуваются. Это обеспечивает получение аккуратного шва.

Во время работы следует обращать внимание, чтобы пятно дуги располагалось непосредственно по центру электрода. Чтобы поддерживать все в стабильном состоянии, здесь используется тангенциальная подача воздуха. Если во время работы произошли какие-либо нарушения воздушного потока, то качество резки начнет сильно ухудшаться.

Заключение

Как стало видно, создать плазморез из сварочного инвертора своими руками не составляет большого труда. Для этого может подойти практически любой доступный источник питания, будь то или отечественные. При самостоятельном создании используются зачастую покупные конструктивные элементы, что делает сам процесс более безопасным. Здесь не так уж много элементов для сборки и подобрать их по необходимым параметрам для специалистов не составит особого труда.

Бесспорно многие из нас видели видео на ютубе, где Виталий Богачев собрал плазменный резак из обычного сварочного аппарата дуговой сварки
Постараюсь объяснить простыми словами без всякого фанатизма. Виталий, удалил вторичную обмотку на сварочном трансформаторе и вместо нее намотал новую вторичную обмотку кабелем меньшего сечения, что бы поднять выходное напряжение до 200В. Следом установил диодный мост на радиаторы и дроссель намотанный на железе, походу от большего сварочного трансформатора. Подключил это дело к резаку.
Для продувки использовал обычный воздух накачиваемый компрессором

Вот первое видео в котором Виталий описал конструкцию прибора

Во втором видео Виталий показал как работает его самопальный плазменный резак. Видно, что резак режет метал до 8мм, но Виталий не показывает сам аппарат во время резки, даже элементарно зайти в это помещение и показать куда тянется рукав от резака, этого нет

Честно, ну очень меня поманила эта идея и захотелось собрать подобное устройство, но вот что насторожило. Почему заводские аппараты для плазменной резки стоят приличных денег, если в них нет ничего такого сложного, может в видео есть подвох и на самом деле видео для пиара

Во первых нужен сварочный аппарат для дуговой сварки переменного тока 200А, а точнее таких аппаратов нужно пара. Первый трансформатор будет силовой, второй трансформатор будет в качестве дросселя. На сварочном трансформаторе три обмотки, две первичные обмотки 0-220-400В, а так же вторичная обмотка 40В. Вот что я планирую делать с этими трансформаторами, разрезать оба трансформатора, снять вторичную обмотку с первого и на ее место поставить первичку второго трансформатора, вот и должно у меня получится на вторичной обмотке 200В. Теперь о дросселе. Остается у меня железо со второго трансформатора, а так же две вторичные обмотки, которые можно одеть на второй сердечник и последовательно соединить. Должен получиться великолепный дроссель с пока неизвестной индуктивностью.
Посмотрел на эти сварочные трансформаторы в Яндекс маркете и нашел самый дешевый вариант по 2 376 ₽ за один. Значит за два с учетом доставки выйдет примерно 6,500Р.
Вот такие сварочные аппараты

Иду далее, нужны 4 диода напряжением от 600В, но лучше 1000В. Ток для диодов лучше выбрать побольше скажем 150А будет в самый раз. За этим делом обращусь ка я на AliExpress. Нашел подходящий диодный мостик на 150А 1600В на обратный пробой, такой хороший запас по обратному напряжению не будет лишний.


Цена на такой диодный мостик 770,33 руб., вот ссылка для покупки. Так же нужен радиатор для охлаждения диодного моста, лучше чем радиатор с процессора ПК идей нет, такой радиатор можно на барахолке купить за 100-200Р. И того 1000Р за выпрямитель

Для работы плазменного резака нужен компрессор, ну это дело решенное, давно собран. Компрессор это хорошо, а вот воздух должен быть чистым, без масла и влаги. Значит надо перед резаком ставить осушитель, который опять же лучше заказать с Китая. Приглянулся мне фильтр AF2000-02 G1/4 за 442,20 руб.


Осушитель выдерживает давление в 1.5 МПа, что вполне устраивает. Так же нужен клапан для управления, клапан буду использовать типа такого, цена на него 480Р. Вот ссылка

Так же для соединения между собой нужны штуцера диаметром 1\4 дюйма


Как вариант можно заказать 5 штучек за 276 руб. ссылка вот

Следующий компонент плазменного резака и пожалуй основной это сама горелка. Такая горелочка стоит немало у нас, но и в Китае просят за нее 2400Р.


Из того что предлагают Китайцы, это самый дешевый вариант. Заказать такой можно по ссылке . Так же для подключения этого рукава нужен штуцер, такой же как я показывал в статье про . Что то найти толкового ничего не смог в интернете, поэтому прийдется заказывать у токаря. Это еще рублей 600-800

Еще несколько компонентов надо для полного комплекта.
Несколько релюшек для управления силовым трансформатором и клапанном газа.

Такие реле можно