Паяльная станция на 12в схема. Регулятор мощности для паяльника своими руками — схемы и варианты монтажа

В интернете очень много схем различных паяльных станций, но у всех есть свои особенности. Одни сложны для новичков, другие работают с редкими паяльниками, третьи не закончены и т.д. Мы сделали упор именно на простоту, низкую стоимость и функциональность, чтобы каждый начинающий радиолюбитель смог собрать такую паяльную станцию.

Для чего нужна паяльная станция

Обычный паяльник, который включается напрямую в сеть просто греет постоянно с одинаковой мощностью. Из-за этого он очень долго разогревается и никакой возможности регулировать температуру в нем нет. Можно диммировать эту мощность, но добиться стабильной температуры и повторяемости пайки будет очень сложно.
Паяльник, подготовленный для паяльной станции имеет встроенный датчик температуры и это позволяет при разогреве подавать на него максимальную мощность, а затем удерживать температуру по датчику. Если просто пытаться регулировать мощность пропорционально разности температур, то он будет либо очень медленно разогреваться, либо температура будет циклически плавать. В итоге программа управления обязательно должна содержать алгоритм ПИД-регулирования.
В своей паяльной станции мы, конечно, использовали специальный паяльник и уделили максимум внимания стабильности температуры.

Технические характеристики

  1. Питание от источника постоянного напряжения 12-24В
  2. Потребляемая мощность, при питании 24В: 50Вт
  3. Сопротивление паяльника: 12Ом
  4. Время выхода на рабочий режим: 1-2 минуты в зависимости от питающего напряжения
  5. Предельное отклонение температуры в режиме стабилизации, не более 5ти градусов
  6. Алгоритм регулирования: ПИД
  7. Отображение температуры на семисегментном индикаторе
  8. Тип нагревателя: нихромовый
  9. Тип датчика температуры: термопара
  10. Возможность калибровки температуры
  11. Установка температуры при помощи экодера
  12. Светодиод для отображения состояния паяльника (нагрев/работа)

Принципиальная схема

Схема предельно простая. В основе всего микроконтроллер Atmega8. Сигнал с оптопары подается на операционный усилитель с регулируемым коэффициентом усиления (для калибровки) и затем на вход АЦП микроконтроллера. Для отображения температуры использован семисегментный индикатор с общим катодом, разряды которого включены через транзисторы. При вращении ручки энкодера BQ1 задается температура, а в остальное время отображается текущая температура. При включении задается начальное значение 280 градусов. Определяя разницу между текущей и требуемой температурой, пересчитав коэффициенты ПИД-составляющих, микроконтроллер при помощи ШИМ-модуляции разогревает паяльник.
Для питания логической части схемы использован простой линейный стабилизатор DA1 на 5В.

Печатная плата

Печатная плата односторонняя с четырьмя перемычками. Файл печатной платы можно будет скачать в конце статьи.

Список компонентов

Для сборки печатной платы и корпуса потребуются следующие компоненты и материалы:

  1. BQ1. Энкодер EC12E24204A8
  2. C1. Конденсатор электролитический 35В, 10мкФ
  3. C2, C4-C9. Конденсаторы керамические X7R, 0.1мкФ, 10%, 50В
  4. C3. Конденсатор электролитический 10В, 47мкФ
  5. DD1. Микроконтроллер ATmega8A-PU в корпусе DIP-28
  6. DA1. CСтабилизатор L7805CV на 5В в корпусе TO-220
  7. DA2. Операционный усилитель LM358DT в корпусе DIP-8
  8. HG1. Семисегментный трехразрядный индикатор с общим катодом BC56-12GWA.Также на плате предусмотрено посадочное место под дешевый аналог .
  9. HL1. Любой индикаторный светодиод на ток 20мА с шагом выводов 2,54мм
  10. R2,R7. Резисторы 300 Ом, 0,125Вт — 2шт
  11. R6, R8-R20. Резисторы 1кОм, 0,125Вт — 13шт
  12. R3. Резистор 10кОм, 0,125Вт
  13. R5. Резистор 100кОм, 0,125Вт
  14. R1. Резистор 1МОм, 0,125Вт
  15. R4. Резистор подстроечный 3296W 100кОм
  16. VT1. Полевой транзистор IRF3205PBF в корпусе TO-220
  17. VT2-VT4. Транзисторы BC547BTA в корпусе TO-92 — 3шт
  18. XS1. Клемма на два контакта с шагом выводов 5,08мм
  19. Клемма на два контакта с шагом выводов 3,81мм
  20. Клемма на три контакта с шагом выводов 3,81мм
  21. Радиатор для стабилизатора FK301
  22. Колодка для корпуса DIP-28
  23. Колодка для корпуса DIP-8
  24. Выключатель питания SWR-45 B-W(13-KN1-1)
  25. Паяльник . О нем мы еще позже напишем
  26. Детали из оргстекла для корпуса (файлы для резки в конце статьи)
  27. Ручка энкодера. Можно купить ее, а можно напечатать на 3D-принтере. Файл для скачивания модели в конце статьи
  28. Винт М3х10 — 2шт
  29. Винт М3х14 — 4шт
  30. Винт М3х30 — 4шт
  31. Гайка М3 — 2шт
  32. Гайка М3 квадратная — 8шт
  33. Шайба М3 — 8шт
  34. Шайба М3 гроверная — 8шт
  35. Также для сборки потребуются монтажные провода, стяжки и термоусадочная трубка

Вот так выглядит комплект всех деталей:

Монтаж печатной платы

При сборке печатной платы удобно пользоваться сборочным чертежом:

Подробно процесс монтажа будет показан и прокомментирован в видео ниже. Отметим только несколько моментов. Необходимо соблюдать полярность электролитических конденсаторов,светодиода и направление установки микросхем. Микросхемы не устанавливать до тех пор, пока корпус полностью не собран и не проверено питающее напряжение. С микросхемами и транзисторами необходимо обращаться аккуратно, чтобы не повредить их статическим электричеством.
После того, как плата собрана, она должна выглядеть вот так:

Сборка корпуса и объемный монтаж

Монтажная схема блока выглядит следующим образом:

То есть осталось всего навсего подвести к плате питание и подключить разъем паяльника.
К разъему паяльника требуется припаять пять проводов. К первому и пятому красные, к остальным черные. На контакты надо сразу надеть термоусадочную трубку, а свободные концы проводов залудить.
К выключателю питания следует припаять короткий (от переключателя к плате) и длинный (от переключателя к источнику питания) красные провода.
Затем выключатель и разъем можно установить на лицевую панель. Обратите внимание, что выключатель может входить очень туго. При необходимости доработайте лицевую панель надфилем!

На следующем этапе все эти части собираются вместе. Устанавливать контроллер, операционный усилитель и прикручивать лицевую панель не нужно!

Прошивка контроллера и настройка

HEX-файл для прошивки контроллера вы сможете найти в конце статьи. Фьюз-биты должны остаться заводскими, то есть контроллер будет работать на частоте 1МГц от внутреннего генератора.
Первое включение следует производить до установки микроконтроллера и операционного усилителя на плату. Подайте постоянное напряжение питания от 12 до 24В (красный должен быть "+", черный "-") на схему и проконтролируйте, что между выводами 2 и 3 стабилизатора DA1 присутствует напряжение питания 5В (средний и правый выводы). После этого отключите питание и установите микросхемы DA1 и DD1 в панельки. При этом следите за положением ключа микросхем.
Снова включите паяльную станцию и убедитесь, что все функции работают правильно. На индикаторе отображается температура, энкодер ее изменяет, паяльник нагревается, а светодиод сигнализирует о режиме работы.
Далее необходимо откалибровать паяльную станцию.
Оптимальный вариант при калибровке – использование дополнительной термопары. Необходимо выставить требуемую температуру и проконтролировать ее на жале по эталонному прибору. Если показания различаются, то произведите подстройку многооборотным подстроечным резистором R4.
При настройке помните, что показания индикатора могут отличаться незначительно от фактической температуры. То есть, если вы установили, например, температуру "280", а показания индикатора в небольшой степени отклоняются, то по эталонному прибору вам нужно добиваться именно температуры 280°С.
Если под рукой нет контрольного измерительного прибора, то можно установить сопротивление резистора около 90кОм и потом подбирать температуру опытным путем.
После того, как паяльная станция проверена, можно аккуратно, чтобы не потрескались детали, установить лицевую панель.

Видео работы

Мы сняли краткое видео-обзор

…. и подробное видео, на котором показан процесс сборки:

Моделей паяльников в магазинах множество - от дешёвых китайских до дорогих, со встроенным регулятором температуры, продаются даже паяльные станции.

Другое дело, нужна ли та же станция, если подобные работы нужно выполнять раз в год, а то и реже? Проще купить недорогой паяльник. А у кого-то дома сохранились простые, но надёжные советские инструменты. Паяльник, не оснащённый дополнительным функционалом, греет на полную, пока вилка в сети. А отключённый, быстро остывает. Перегретый паяльник способен испортить работу: им становится невозможно прочно припаять что-либо, флюс быстро испаряется, жало окисляется и припой скатывается с него. Недостаточно нагретый инструмент и вовсе может испортить детали - из-за того что припой плохо плавится, паяльник можно передержать впритык к деталям.

Чтобы сделать работу комфортнее, можно собрать своими руками регулятор мощности, который ограничит напряжение и тем самым не даст жалу паяльника перегреваться.

Регуляторы для паяльника своими руками. Обзор способов монтажа

В зависимости от вида и набора радиодеталей, регуляторы мощности для паяльника могут быть разных размеров, с разным функционалом. Можно собрать как небольшое простое устройство, в котором нагрев прекращается и возобновляется нажатием кнопки, так и габаритное, с цифровым индикатором и программным управлением.

Возможные виды монтажа в корпус: вилка, розетка, станция

В зависимости от мощности и задач регулятор можно поместить в несколько видов корпуса. Самый простой и довольной удобный - вилка. Для этого можно использовать зарядное устройство для сотового телефона или корпус любого адаптера. Останется только найти ручку и поместить её в стенке корпуса. Если корпус паяльника позволяет (там достаточно места), можно разместить плату с деталями в нём.

Другой вид корпуса для несложных регуляторов - розетка. Она может быть как одинарной, так и представлять собой тройник-удлинитель. В последнем можно очень удобно поставить ручку со шкалой.

Вариантов монтажа регулятора с индикатором напряжения тоже может быть несколько. Все зависит от сообразительности радиолюбителя и фантазии. Это может быть как очевидный вариант - удлинитель с вмонтированным туда индикатором, так и оригинальные решения.

Собрать можно даже подобие паяльной станции, установить на ней подставку для паяльника (её можно купить отдельно). При монтаже нельзя забывать о правилах безопасности. Детали нужно изолировать - например, термоусадочной трубкой.

Варианты схем в зависимости от ограничителя мощности

Регулятор мощности можно собрать по разным схемам. В основном различия состоят в полупроводниковой детали, приборе, который будет регулировать подачу тока. Это может быть тиристор или симистор. Для более точного управления работой тиристора или симистора в схему можно добавить микроконтроллер.

Можно сделать простейший регулятор с диодом и выключателем - для того чтобы оставить паяльник в рабочем состоянии на какое-то (возможно, длительное) время, не давая ему ни остывать, ни перегреваться. Остальные регуляторы дают возможность задать температуру жала паяльника более плавно - под различные нужды. Сборка устройства по любой из схем производится схожим способом. В фотографиях и видеороликах приведены примеры того, как можно собрать регулятор мощности для паяльника своими руками. На их основе можно сделать прибор с нужными лично вам вариациями и по собственной схеме.

Тиристор - своеобразный электронный ключ. Пропускает ток только в одном направлении. В отличие от диода у тиристора 3 выхода - управляющий электрод, анод и катод. Открывается тиристор посредством подачи импульса на электрод. Закрывается при смене направления или прекращении подачи проходящего через него тока.

Или триак - вид тиристора, только в отличие от этого прибора, двусторонний, проводит ток в обоих направлениях. Представляет собой, по сути, два тиристора, соединённые вместе.

Симистор, или триак. Основные части, принцип действия и способ отображения на схемах. А1 и А2 - силовые электроды, G - управляющий затвор

В схему регулятора мощности для паяльника - зависимости от его возможностей - включают следующие редиодетали.

Резистор - служит для преобразования напряжения в силу тока и обратно. Конденсатор - основная роль этого прибора в том, что он перестаёт проводить ток, как только разряжается. И начинает проводить вновь - по мере того как заряд достигает нужной величины. В схемах регуляторов конденсатор служит для того, чтобы выключить тиристор. Диод - полупроводник, элемент, который пропускает ток в прямом направлении и не пропускает в обратном. Подвид диода - стабилитрон - используется в устройствах для стабилизации напряжения. Микроконтроллер - микросхема, при помощи которой обеспечивается электронное управление устройством. Бывает разной степени сложности.

Схема с выключателем и диодом

Такой тип регулятора самый простой в сборке, с наименьшим количеством деталей. Его можно собирать без платы, на весу. Выключатель (кнопка) замыкает цепь - на паяльник подаётся всё напряжение, размыкает - напряжение падает, температура жала тоже. Паяльник при этом остаётся нагретым - такой способ хорош для режима ожидания. Подойдёт выпрямительный диод, рассчитанный на ток от 1 Ампера.

Сборка двухступенчатого регулятора на весу

  1. Подготовить детали и инструменты: диод (1N4007), выключатель с кнопкой, кабель с вилкой (это может быть кабель паяльника или же удлинителя - если есть страх испортить паяльник), провода, флюс, припой, паяльник, нож.
  2. Зачистить, а потом залудить провода.
  3. Залудить диод. Припаять провода к диоду. Удалить лишние концы диода. Надеть термоусадочные трубки, обработать нагревом. Можно также использовать электроизоляционную трубку - кембрик. Подготовить кабель с вилкой в том месте, где удобнее будет крепить выключатель. Разрезать изоляцию, перерезать один из находящихся внутри проводов. Часть изоляции и второй провод оставить целыми. Зачистить концы разрезанного провода.
  4. Расположить диод внутри выключателя: минус диода - к вилке, плюс - к выключателю.
  5. Скрутить концы разрезанного провода и проводов, подсоединённых к диоду. Диод должен находиться внутри разрыва. Провода можно спаять. Подключить к клеммам, затянуть винты. Собрать выключатель.

Регулятор с выключателем и диодом - пошагово и наглядно

Регулятор на тиристоре

Регулятор с ограничителем мощности - тиристором - позволяет плавно устанавливать температуру паяльника от 50 до 100%. Для того чтобы расширить эту шкалу (от нуля до 100%), в схему нужно добавить диодный мост. Сборка регуляторов и на тиристоре, и на симисторе совершает сходным образом. Метод можно применить для любого устройства такого типа.

Сборка тиристорного (симисторного) регулятора на печатной плате

  1. Сделать монтажную схему - наметить удобное расположение всех деталей на плате. Если плата приобретается - монтажная схема идёт в комплекте.
  2. Подготовить детали и инструменты: печатную плату (её нужно сделать заранее согласно схеме или купить), радиодетали - см. спецификацию к схеме, кусачки, нож, провода, флюс, припой, паяльник.
  3. Разместить на плате детали согласно монтажной схеме.
  4. Откусить кусачками лишние концы деталей.
  5. Смазать флюсом и припаять каждую деталь - сначала резисторы с конденсаторами, потом - диоды, транзисторы, тиристор (симистор), динистор.
  6. Подготовить корпус для сборки.
  7. Зачистить, залудить провода, припаять к плате согласно монтажной схеме, установить плату в корпус. Заизолировать места соединения проводов.
  8. Проверить регулятор - подключить к лампе накаливания.
  9. Собрать устройство.

Схема с маломощным тиристором

Тиристор небольшой мощности недорогой, занимает мало места. Его особенность - в повышенной чувствительности. Для управления им используются переменный резистор и конденсатор. Подходит для устройств мощностью не более 40 Вт.

Спецификация

Схема с мощным тиристором

Управление тиристором осуществляется за счёт двух транзисторов. Уровень мощности регулирует резистор R2. Регулятор, собранный по такой схеме, рассчитан на нагрузку до 100 Вт.

Спецификация

Название Обозначение Вид/Номинал
Конденсатор C1 0,1 мкФ
Транзистор VT1 КТ315Б
Транзистор VT2 КТ361Б
Резистор R1 3,3 кОм
Резистор переменный R2 100 кОм
Резистор R3 2,2 кОм
Резистор R4 2,2 кОм
Резистор R5 30 кОм
Резистор R6 100 кОм
Тиристор VS1 КУ202Н
Стабилитрон VD1 Д814В
Диод выпрямительный VD2 1N4004 или КД105В

Сборка тиристорного регулятора по приведённой схеме в корпус - наглядно

Сборка и проверка тиристорного регулятора (обзор деталей, особенности монтажа)

Схема с тиристором и диодным мостом

Такое устройство даёт возможность регулировки мощности от нуля до 100%. В схеме использован минимум деталей.

Спецификация

Регулятор на симисторе

Схема регулятора на симисторе с небольшим количеством радиодеталей. Позволяет регулировать мощность от нуля до 100%. Конденсатор и резистор обеспечат чёткую работу симистора - он будет открываться даже при низкой мощности.

Сборка симисторного регулятора по приведённой схеме пошагово

Регулятор на симисторе с диодным мостом

Схема такого регулятора не очень сложная. При этом варьировать мощность нагрузки можно в довольно большом диапазоне. При мощности более 60 Вт лучше посадить симистор на радиатор. При меньшей мощности охлаждение не нужно. Метод сборки такой же, как и в случае с обычным симисторным регулятором.

Резистор R3 1 кОм Резистор R4 1 кОм Резистор R5 100 Ом Резистор R6 47 Ом Резистор R7 1 МОм Резистор R8 430 кОм Резистор R9 75 Ом VS1 BT136–600E Стабилитрон VD2 1N4733A (5.1v) Диод VD1 1N4007 Микроконтроллер DD1 PIC 16F628 Индикатор HG1 АЛС333Б

Перед монтажом собранный регулятор можно проверить мультиметром. Проверять нужно только с подключённым паяльником , то есть под нагрузкой. Вращаем ручку резистора - напряжение плавно изменяется.

В регуляторах, собранных по некоторым из приведённых здесь схем, уже будут стоять световые индикаторы. По ним можно определить, работает ли устройство. Для остальных самая простая проверка - подключить к регулятору мощности лампочку накаливания. Изменение яркости наглядно отразит уровень подаваемого напряжения.

Регуляторы, где светодиод находится в цепи последовательно с резистором (как на схеме с маломощным тиристором), можно наладить. Если индикатор не горит, нужно подобрать номинал резистора - взять с меньшим сопротивлением, пока яркость не будет приемлемой. Слишком большой яркости добиваться нельзя - сгорит индикатор.

Как правило, регулировка при правильно собранной схеме не требуется. При мощности обычного паяльника (до 100 Вт, средняя мощность - 40 Вт) ни один из регуляторов, собранных по вышеприведённым схемам, не требует дополнительного охлаждения. Если паяльник очень мощный (от 100 Вт), то тиристор или симистор нужно установить на радиатор во избежание перегрева.

Регулятор мощности для паяльника можно собрать своими руками, ориентируясь на собственные возможности и потребности. Существует немало вариантов схем регулятора с различными ограничителями мощности и разными средствами управления. Здесь приведены некоторые, самые простые из них. А небольшой обзор корпусов, в которые можно смонтировать детали, поможет выбрать формат устройства.

Давно мечтал о паяльной станции, хотел пойти и купить - но как-то не по карману мне было. И решил сделать сам, . Купил фен от Luckey-702 , и начал потихоньку собирать по приведенной схеме ниже. Почему выбрал именно эту электросхему? Так как видел фото готовых станций по ней и решил, что она рабочая на 100%.

Принципиальная схема самодельной паяльной станции

Схема простая и довольно неплохо работает, но есть нюанс - очень чувствительная к наводкам, поэтому желательно навешать побольше керамики в цепи питания микроконтроллера. И по возможности сделать плату с симистором и оптопарой на отдельной печатной плате. Но я так не делал, для экономии стеклотекстолита. Сама схема, прошивка и печатка прилагаются в архиве , только прошивка под индикатор с общим катодом. Фьюзы для МК Atmega8 на фото ниже.

Для начала разберите ваш фен и определите на какое напряжение у вас стоит моторчик, потом подключите все провода к плате кроме нагревателя (полярность термопары можно определить подключив тестер). Примерная распиновка проводов фена Luckey 702 на фото ниже, но рекомендую разобрать свой фен и посмотреть что и куда идет, сами понимаете - китайцы, они такие!

Затем подайте питание на плату и переменным резистором R5 настройте показания индикатора на комнатную температуру, потом отпаяйте резистор на R35 и подстроечником R34 отрегулируйте напряжение питания моторчика. А если он у вас на 24 вольт, то отрегулируйте 24 вольт. И после этого померяйте напряжение на 28 ноге МК - там должно быть 0,9 вольт, если это не так пересчитайте делитель R37/ R36 (для 24 вольтового моторчика соотношение сопротивлений 25/1, у меня 1 кОм и 25 кОм), напряжение на 28 ноге 0,4 вольт - минимальные обороты, 0,9 вольт максимальные обороты. После этого можете подключить нагреватель и если понадобится откорректировать температуру подстроечником R5.

Немного об управлении . Есть три кнопки для управления: Т+ ,Т-, М. Первые две изменяют температуру, нажимая один раз кнопку значение меняется на 1 градус, если удерживать то значения начинают быстро меняться. Кнопка М - память позволяет запоминать три значения температуры, стандартно это 200, 250 и 300 градусов, но вы можете изменить их как вам удобно. Для этого надо нажать кнопку М и удерживать пока не услышите дважды подряд сигнал бипера, тогда можете кнопками Т+ и Т- изменять температуру.

В прошивке есть функция охлаждения фена, кладя фен на подставку он начинает охлаждаться моторчиком, при этом нагреватель выключается и пока не остынет до 50 градусов моторчик не выключается. Когда фен на подставке, когда холодный или обороты двигателя меньше нормальных допустимых (на 28 ноге меньше 0,4 вольт) - на дисплее будет три черточки.

Подставка должна быть с магнитом, желательно посильнее или неодимовым (от винчестера). Так как в фене есть геркон который переводит фен в режим охлаждения когда он на подставке. Я пока что еще не сделал подставку.

Фен можно остановить двумя способами - кладя на подставку или скручивая обороты моторчика до нуля. Ниже фото моей готовой паяльной станции.

Видео работы паяльной станции

В общем схема, как и предполагалось, вполне толковая - можете смело повторять. С уважением, AVG .

Обсудить статью СХЕМА ПАЯЛЬНОЙ СТАНЦИИ

Паяльная станция построена на картриджах Hakko T12 . Имеет два паяльника по 70 Ватт, вытяжку дымоуловитель, блоки питания для внешних потребителей. Бюджет составил около 10-15$.

Начало эпопеи было несколько месяцев назад когда пришло купленное на пробу жало Hakko T12-KU. Собранный для пробы паяльник " " оказался вполне удобным, также сами картридж жала порадовали своей работой. Было заказано еще одно более массивное жало, и я решил сделать законченную паяльную станцию.

Функции паяльной станции:

    Два паяльника по 70вт управляемых по отдельным каналам. При выпайке деталей, часто удобней пользоваться двумя паяльниками одновременно. Да и при монтаже не надо терять время на смену жала. Плюс в моей конструкции паяльника замена жал не предусмотрена, для тех кто хочет иметь сменные жала в качестве одного из паяльников нужно поставить покупную ручку.

    Вытяжка с фильтром. Дышать флюсом и припоем особо не хочется и лишнего места на столе, как правило нет, а тут одним блоком заменил два.

    Блок питания 24в с отдельным выключателем, можно подключить дрель или других потребителей. Дополнительно также экономится место, поскольку не надо держать блок питания для дрели или постоянно перенастраивать лабораторный блок питания.

    Блок питания 5в, два разъема USB, для питания самих устройств. Я последнее время на все платы с питанием от 5в распаиваю в качестве питания мини USB разъемы или для совсем мелких плат кидаю шнурок с USB разъемом на конце.

Warning

Сначала несколько предупреждений.

Первое.

В случае отсутствия качественной земли крайне не рекомендую использовать для питания паяльников блок построенный на основе компьютерного блока питания. Т.е. не желательно их использовать в старых домах где не проведена централизованно шина заземления. Использовать в качестве заземления трубы центрального отопления также нельзя поскольку сейчас массово в квартирах заменяются трубы на пластиковые и нельзя быть уверенным в электрическом соединении батареи с землей.

Если вы предполагаете возможность использования паяльной станции при отсутствии качественного заземления, то следует блок питания строить на основе классического трансформатора. (Схемы регуляторов температуры не требуют стабилизированного источника питания, единственное желательно, что бы напряжение лежало в пределах от 19 до 24 в, иначе мощность паяльника значительно упадет. т.е. можно обойтись после трансформатора просто выпрямителем с конденсаторным фильтром)

Второе.

Я не заземлял жало. Предполагаю при пайке особо чувствительных элементов просто бросать провод с крокодилом на жало. Если вы часто паяете маломощные полевые транзисторы и другие элементы, особо чувствительные к пробою, то рекомендую заземление заложить сразу. Единственное по соображениям безопасности жало как и браслет следует заземлить через резистор более 100 кОм (рекомендуется через резистор 1МОм).

Третье.

Как говорится не все йогурты одинаково полезны.

Второе жало купленное за $2.76 имеет заметные недостатки.

Перечислю по возрастанию проблемы.

1. При работе регулятора от жала слышны звуки, щелчки при включении циклов нагрева. Скорее всего при заливке нагревателя остались пустоты, как это скажется на долговечности не понятно.

2. Термопара занижает показания. Если у вас такое жало будет использоваться вместе с нормальными придется проводить постоянно перекалибровку, смешение довольно большое около 100гр. А для аналоговой схемы регулировки перекалибровка представляет не тривиальную задачу.

3. Самый главный недостаток. При протекании тока похоже нагревается холодный спай термопары, что нарушает нормальную работу регулятора.

Привожу осциллограммы работы регулятора со старым жалом (стоило оно около 4$) и нового.

Со старым жалом регулятор нормально функционирует, цикл нагрева и длинная пауза пока набранная температура не упадет до пороговой.

Жало за 2.76$ кардинально отличается в поведении. Как я предполагаю происходит нагрев холодного спая током протекающим во время разогрева. И после цикла нагрева при измерении температуры происходит ошибка и схема снова уходит в нагрев, пока температура горячей части не превысит температуру на которую нагрелся холодный спай протекающим током. После пачки циклов нагрева порог все таки превышается и регулятор уходит в длинную паузу. Холодный спай быстро остывает (менее 100мс) и температура меряется близко к правильной. В итоге фактически удлиняется цикл нагрева и мы получаем колебания температуры жала, для относительно массивного жала на конце они оказались на уровне нескольких градусов, что не фатально влияет на работу. Как подобные жала будут работать с ПИД регуляторами затрудняюсь сказать, но думаю результаты будут более плачевные и добиться устойчивой работы регулятора не получится.

Основной блок

Паяльная станция построена на базе блока питания АТХ с 12см вентилятором. Взял для переделки вот такого махрового китайца. Заявленная мощность совершенно не соответствует начинке, реально блок ватт на 200. Но для наших целей вполне сойдет потребление в пике двух паяльников не превысит 140 Вт.

С верху разместил два регулятора температуры, отдельно для каждого паяльника. И три выключателя позволяющие раздельно включать каждый паяльник и внешнюю нагрузку 24в. Общее включение блока оставил на штатном выключателе блока АТХ. Кабель питания также подключается к штатному разъему. Дополнительно вывел разъемы питания 24в и колодку USB для подключения нагрузки 5в.

12см вентилятор помимо обдува блока, использую для вытяжки дыма. Для увеличения воздушного потока помимо вентилятора внутри корпуса установлен еще один вентилятор на наружной стороне. Желательно использовать вентиляторы мощностью более 4Вт. Мне попался вентилятор 12см 220В 8Вт который я использовал как внешний. Для питания вентилятора 12в используется линейный стабилизатор КРЕН8Б установленный через изолирующую прокладку на радиатор низковольтных диодов. Он понижает напряжение 24В до 12, одновременно он вместе с вентилятором служит нагрузкой блока питания на холостом ходу. При использовании 2 мощных вентиляторов 12В желательно использовать импульсный понижающий стабилизатор (стоимость готовой платы на ток около 2А на али около 1$). В крайнем случае, при использовании линейного стабилизатора установите его на отдельный радиатор. На внешний вентилятор спереди закреплена решетка от вентилятора блока питания, по верх которой размешен воздушный фильтр. Использовал кусок фильтра от кухонной вытяжки, он в составе волокна имеет отсорбент. Можно также поискать и чисто угольные фильтры, мне к сожалению пока не попался подходящих размеров.

Подробно останавливаться на переделке блока АТХ не буду поскольку доработка зависит от модели блока питания. Мой блок был построен на базе микросхемы 3845. Я убрал все все элементы не 12в каналов и все элементы штатных фильтров и конденсаторов вторичного питания. Распаял новый фильтр используя более высоковольтные конденсаторы. Мне повезло, что в максимуме блок выдавал 29в, и для получения 24в пришлось только подобрать сопротивление резисторов в цепи стабилизации, и заблокировать цепи защиты по напряжению.

На задней решётке видны клеммы 24 в и планка с USB взятая от старого корпуса. Отверстия проделывал просто выкусывая элементы решётки.

Конструкция паяльников

Конструкцию рассматривал и в предыдущей статье. Сейчас повторно и более подробно покажу этапы изготовления.

Подключения проводов на скрутке и термоусадках.

А также относительно прошлого раза несколько изменил склейку бумаги. Я в этот раз увеличение площади слоев сделал постепенной, что облегчило склейку.

Сверху обжал термоусадку.

Сзади для увеличения жесткости залил клеем.

Ручка паяльника получается легкая 26 гр. Расстояние от жала не большое всего 4.5 см.

Такую конструкцию можно использовать как минимум для второго паяльника, например сделав его на основе жала T12-K или T12-KF, которые удобны для выпаивания компонентов и микросхем.

Также в сети встречал такой вариант: человек припаивали провода к контактам, а ручку делал из дерева.

Схема регулятора температуры

В этот раз сделал схему на основе LM324. (схема на основе LM358 приведена в прошлый раз).

Китайский вариант схемы взятый за основу должен быть тоже работоспособным, единственное надо параллельно конденсатору С4 поставить защитный диод типа 1N4148, как в схеме на LM358, и полевой транзистор должен иметь разрешённое напряжение по затвору более 25 в.

Основное отличие этой схемы, от схемы на LM358, это то что напряжение с термопары сначала усиливается, а лишь затем подается на компаратор. Моя схема представляет компиляцию предыдущего устройства на LM358 и китайской схемы на LM324.

Плату рисовал в Sprint-Layout версии 5. Переменный резистор ВСП4-1 0.5вт, СМД резисторы и керамические конденсаторы типоразмера 0805, кроме R3 размера 2512 и R8 размера 1206, конденсатор С7 типо размера В. Разводка платы не идеально но мне нужно было что бы по размерам и посадке она совпадала с предыдущей платой. Диод D3 служит для зашиты от неправильного включения и в принципе он не нужен если плата не используется автономно, но я в процессе отладки умудрился включить плату неправильно по полярности в итоге через несколько секунд рванул конденсатор С5, а остальная плата осталась цела. Резистор R3 можно заменить просто перемычкой. Резисторы R1 и R2 вместе с подстроечным резистором определяют диапазон регулировки температуры, к сожалению разброс дрейфа нуля операционного усилителя не позволяет точно подобрать номиналы этих резисторов. У меня диапазон регулировки настроен от 200 до 400 градусов.

Плату делал на двух стороннем текстолите одна из сторон используется под землю. В контакты обозначенные на схеме как с металлизацией впаиваются перемычки остальные зенкуются. Но плату можно сделать и используя односторонний текстолит, тогда со всех точек обозначенных металлизацией бросаются перемычки проводами на точку расположенную рядом с отрицательным выводом электролита С5 (желательно внести изменения в плату добавив там дополнительных площадок). Я обрезаю плату до нужного размера после травления сверловки и лужения, поскольку на краях где резал ножницами фольга деформированна и плохо зачищается.

После распайки СМД деталей отмыл плату, а уже затем распаял переменный и подстроечный резистор, а также ДИП детали с проводами. Это позволяет при пайке СМД меньше ограничиваться в выборе флюсов.

Остальные детали и провода паяю используя спиртоканифоль или последнее время чаще безотмывочный флюс. (Из за проблем с жалом во время отладки и пока не понял причин немного замучил плату перепайками.)

В целом схема на LM324 немного лучше работает чем на LM358, хотя при пайке различия не особо заметны. Схема на LM358 при подходе к температуре стабилизации примерно на секунду частит светодиодом, т.е. подход происходит плавно с падением мощности отдаваемым в нагреватель вблизи температуры стабилизации. Схема на LM324 выходит на режим стабилизации более резко почти сразу переходя на медленное мигание светодиодом. Какую схему выбрать для реализации скорее должно определятся какие детали под рукой, как я говорил при пайке особой разницы я не заметил, хоть схема на LM324 и ведет себя лучше.

Планы

Или что хотел сделать и пока не реализовал, как говорится, в мире нет ничего более постоянного чем сделанное временно.

    Подумываю поставить разъемы для паяльников. Чтобы можно было сделать еще паяльников под другие жала и в случае необходимости менять подключенные паяльники. Сейчас на корпусе есть два мини джека, но я опасаюсь их использовать для тока в три ампера.

    Поставит предохранитель на внешние разъемы 24в и возможно также для USB выходов.

    Ну и надо искать, чем заменить старый фильтр вытяжки, а то он уже грязный, и воздух проходит с трудом.

    Также хорошо бы сделать какую то новую подставку под оба паяльника.

    На вентилятор необходимо установить небольшой козырек, что бы направлять потоки воздуха и улучшить всасывание дыма.

    Как продолжения идеи козырька подумываю туда же прикрепить увеличительное стекло с подсветкой, но это совсем из далеких планов.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
U1 Операционный усилитель

LM324

1 В блокнот
U2 Линейный регулятор

LM317

1 В блокнот
Q1 Биполярный транзистор

2N2222A

1 В блокнот
Q2 MOSFET-транзистор

AO4407A

1 В блокнот
D1, D2 Выпрямительный диод

1N4148

2 В блокнот
D3 Выпрямительный диод

1N4007

1 В блокнот
С1 Конденсатор 2.2 нФ 1 В блокнот
С2, С4, C6 Конденсатор 0.1 мкФ 3 В блокнот
С3 Конденсатор 1 мкФ 1 В блокнот
С5 Конденсатор 220 мкФ Х 35В 1 В блокнот
С7 Конденсатор 10 мкФ Х 16В 1 В блокнот
С8 Конденсатор 0.33 мкФ 1 В блокнот
R1 Резистор

8.2 кОм

1 В блокнот
R2 Резистор

1.5 кОм

1 В блокнот
R3 Резистор

75 Ом

1 В блокнот
R4 Резистор

120 кОм

1 В блокнот
R5, R6 Резистор

Температура жала паяльника зависит от многих факторов.

  • Входного напряжения сети, которое не всегда стабильно;
  • Рассеивания тепла в массивных проводах или контактах, на которых производится пайка;
  • Температуры окружающего воздуха.

Для качественной работы требуется поддерживать тепловую мощность паяльника на определенном уровне. В продаже есть большой выбор электроприборов с регулятором температуры, однако стоимость таких устройств достаточно высокая.

Еще более продвинутыми являются паяльные станции. В таких комплексах расположен мощный блок питания, при помощи которого можно контролировать температуру и мощность в широких пределах.

Цена соответствует функциональности.
А что делать, если паяльник уже имеется, и покупать новый с регулятором не хочется? Ответ простой – если вы умеете пользоваться паяльником, сможете изготовить и дополнение к нему.

Регулятор для паяльника своими руками

Эта тема давно освоена радиолюбителями, которые как никто другой заинтересованы в качественном инструменте для паяния. Предлагаем вам несколько популярных решений с электросхемами и порядком сборки.

Двухступенчатый регулятор мощности

Такая схема работает на устройствах с питанием от сети переменного напряжения 220 вольт. В разрыв цепи одного из питающих проводников, параллельно друг другу подключается диод и выключатель. Когда контакты выключателя замкнуты – паяльник запитан в стандартном режиме.

При размыкании – ток проходит через диод. Ели вы знакомы с принципом протекания переменного тока – работа устройства будет понятно. Диод, пропуская ток лишь в одном направлении – отсекает каждый второй полупериод, понижая напряжение вдвое. Соответственно, в два раза снижается мощность паяльника.

В основном, такой режим питания используется при длительных паузах во время работы. Паяльник находится в дежурном режиме, и наконечник не сильно охлаждается. Для приведения температуры к 100% значению, включаем тумблер – и через несколько секунд можно продолжать пайку. При снижении нагрева меньше окисляется медное жало, продлевая срок службы прибора.

Двухрежимная схема на маломощном тиристоре

Данный регулятор напряжения для паяльника подходит к маломощным устройствам, не более 40 Вт. Дли силового управления, используется тиристор КУ101Е (на схеме – VS2). Несмотря на компактные размеры и отсутствие принудительного охлаждения – он практически не греется в любом режиме.

Тиристором управляет схема из переменного резистора R4 (использован обычный СП-04 сопротивлением до 47К) и конденсатора С2 (электролит 22мф).

Принцип работы следующий:

  • Режим ожидания. Резистор R4 выставлен не максимальное сопротивление, тиристор VS2 закрыт. Питание паяльника осуществляется через диод VD4 (КД209), снижая напряжение до 110 вольт;
  • Рабочий режим с регулировкой. В среднем положении резистора R4, тиристор VS2 начинает открываться, частично пропуская через себя ток. Переход в рабочий режим контролируется с помощью индикатора VD6, который зажигается при напряжении на выходе регулятора 150 вольт.

ВАЖНО! Проверка выполняется под нагрузкой, то есть с подключенным паяльником.

При вращении резистора R2 напряжение на входе в паяльник должно плавно изменяться. Схема помещается в корпусе накладной розетки, что делает конструкцию очень удобной.

ВАЖНО! Необходимо надежно изолировать компоненты термоусадочной трубкой, для предотвращения замыкания в корпусе – розетке.

Дно розетки закрывается подходящей крышкой. Идеальный вариант – не просто накладная, а герметичная уличная розетка. В данном случае выбран первый вариант.
Получается своеобразный удлинитель с регулятором мощности. Пользоваться им очень удобно, на паяльнике нет никаких лишних приспособлений, и ручка регулятора всегда под рукой.

Регулятор на микроконтроллере

Если вы считаете себя продвинутым радиолюбителем, можно собрать достойный лучших промышленных образцов, регулятор напряжения с цифровой индикацией. Конструкция представляет собой полноценную паяльную станцию с двумя выходными напряжениями – фиксированным 12 вольт и регулируемым 0-220 вольт.

Низковольтный блок реализован на трансформаторе с выпрямителем, и особой сложности в изготовлении не представляет.

ВАЖНО! При изготовлении блоков питания с разными уровнями напряжения, обязательно установите несовместимые между собой розетки. Иначе можно вывести из строя низковольтный паяльник, по ошибке подключив его к выходу 220 вольт.

Блок управления переменной величиной напряжения выполнен на контроллере PIC16F628A.

Подробности схемы и перечисление элементной базы ни к чему, все видно на схеме. Силовое управление выполнено на симисторе ВТ 136 600. Управление подачей мощности реализовано с помощью кнопок, количество градаций – 10. Уровень мощности от 0 до 9 показывается на индикаторе, который также подключен к контроллеру.

Генератор тактов подает импульсы на контроллер с частотой 4 МГц, это и есть скорость работы программы управления. Поэтому контроллер моментально реагирует на изменение входного напряжения, и стабилизирует выходное.

Схема собирается на монтажной плате, на весу или картонке такое устройство не спаять.

Монтаж двусторонний.

Для удобства станцию можно собрать в корпусе для радиоподелок, или в любом другом, подходящего размера.

В целях безопасности, розетки на 12 и 220 вольт размещаются на разных стенках корпуса. Получилось надежно и безопасно. Такие системы отработаны многими радиолюбителями и доказали свою работоспособность.

Как видно из материала, можно самостоятельно изготовить регулируемый паяльник с любыми возможностями и на любой кошелек.